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Design Optimization  
in Constrained Applications

A constraint does 
not simply determine 
the size of a system. 
Different constraints 
applied to the same 
system will lead to 
dramatically different 
design choices. 
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S
olar designers all want to make sure they are build-
ing an optimized design, or at least “the right” 
design. But not everyone thinks rigorously about 
what optimization means. The most basic version 
of an optimization exercise involves a variable that 

you change and an objective that you try to maximize: “If I 
change X, does Y improve?” A slightly deeper understanding 
of solar optimization acknowledges the importance of inputs 
such as module cost, electricity value and array location. 

Constraints are part of every system design. In fact, they 
are so commonplace that designers often factor them in with-
out explicitly calling them out. However, few engineers realize 
that the constraint drives design choices. The naïve concept 
of a constraint is that designers first determine the opti-
mal array—given the location, costs and so forth—and then 
look at constraints to understand how much of that system 
they can build. In practice, the constraints drive the optimal 
design, and if the constraints change, so does the design. 

Here I provide context for how to think about con- 
straints holistically. I then explain the most common  
constraints. Finally, I show that even with the same set of 
inputs, such as system costs and utility rates, changing  
the fundamental constraint can lead to a dramatic change in 
the optimal system design. 

APPROACHING CONSTRAINTS HOLISTICALLY 
Constraints might seem like an annoyance to avoid or mini-
mize, but they are intrinsic to real-world 
activities. If that seems counterintuitive, keep 
in mind that a system without constraints 
would be infinitely large! 

Often a constraint is so self-evident that 
you do not think about it explicitly. For exam-
ple, when building a system on a commercial 
rooftop, a designer will typically begin the 
engineering process with the whole roof in 
mind. The tenant almost always has the energy 
demand and the budget to justify building out 
the whole roof; therefore, it is only a question 
of how to best populate the available area. In 
this scenario, the designer takes for granted 
that the roof area, not the budget, will be the 
dominant constraint of the array. Similarly, 
for many residential applications, particularly 
as net metering is on the decline, a designer 
might instinctively orient the design process 
around the homeowner’s energy demand, 
making this the factor that drives many other 
decisions about the system. These are both 
examples of constraint thinking at work. 

Assess the hierarchy of constraints. As the 
optimization framework in Figure 1 illustrates, 

a fairly universal set of attributes commonly constrain a sys-
tem: the budget, the available roof or land area, and the energy 
demand. In different applications, these various constraints 
become more or less relevant. Typically one primary constraint 
drives a system design. You might think that a system is both 
space constrained and budget constrained, but in practice, 
one of those constraints imposes limits first. For example, the 
budget might constrain the system to be smaller than the roof-
top would allow. In that case, the financial budget is the actual 
bottleneck, even though there is technically also a space con-
straint. While one constraint might be the primary constraint 
for an array, all the constraints will exist at some level. No proj-
ect has infinite land. No financier has an infinite budget. And 
no off-taker has an infinite demand for energy. 

Identify the bottlenecks. An analogy can be helpful here: 
Any factory machine process has a bottleneck, a step in the 
process that sets the rate of production for the entire line. 
When you solve one bottleneck—say, by improving the 
machine’s speed or adding a second machine to share the 
load—the result is not that you get rid of all bottlenecks, but 
rather that the bottleneck shifts to the next-slowest step in 
the process. Since there will always be a bottleneck some-
where in the system, the goal of the optimization process is 
not to eliminate bottlenecks but rather to manage them.

Similarly, solar designers always have constraints. The goal 
is to understand and harness them in designing and deliver-
ing the system. One of the key lessons is that you should never 
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Figure 1  Whether solar project designers realize it or not, design constraints 
often drive system optimization activities. 
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starve the bottleneck (the constraint) of resources. In other 
words, the slowest machine in a manufacturing operation 
should never spend a moment waiting, since that machine 
will determine the maximum throughput of the factory. We 
can apply the same approach to constraints in solar design.

Focus optimization efforts on constraints. Identifying the 
bottleneck of the design process—the rate-limiting factor—
allows designers to focus their efforts on optimizing the array 
based on that primary constraint. In a space-constrained 
array, the designer seeks to maximize the energy yield per unit 
area. Where ac power is capped based on the interconnection 
capacity, the designer seeks to maximize financial benefits 
against that maximum power rating. You can begin to intuit 
why different design constraints, in the hands of a skilled sys-
tem engineer, lead to different design outcomes.

UNDERSTANDING THE MAJOR CONSTRAINTS 
A number of common constraints apply when designing 
solar arrays, including physical area, budget, energy demand 
and power injection back to the grid. 

Area. An area constraint is most common in commercial 
arrays, as those systems often have ample energy demand 
and a sufficient financial budget relative to their roof space. 
This constraint can also come up in residential arrays, espe-
cially if you restrict designs to south-facing roofs only, as 
well as in ground-mount designs.

The ultimate objective for this design constraint is to 
maximize energy yield per unit of area, which generally 
results in an economically optimal array. Specifically, this 
means maximizing the module fill within the available area, 

meaning that you want to maximize 
power density (kWp per unit of area) 
rather than specific yield (kWh per 
kWp). Since power density typically 
increases faster than specific yield 
decreases, maximizing this value tends 
to maximize energy density (kWh per 
unit of area). In a world of relatively 
inexpensive hardware, this approach 
produces a clear economic win. 

The variables that move the needle 
on power density are the tilt and spac-
ing of the modules. Specifically, opti-
mizing area-constrained applications 
tends to result in systems with lower 
tilt angles and tighter spacing between 
modules, especially with low-cost 
modules. This is why the industry has 
seen a huge push toward commercial 
mounting systems with 5° tilt angles or 
dual-tilt orientations. 

Budget. A budget constraint can hap-
pen in systems of all sizes. Assuming the project is a cash deal 
where the off-taker is the purchaser, available cash can be 
a determining factor in the size and design of an array. This 
constraint also applies if an incentive is capped in total dol-
lars or based on system capacity. For example, a local juris-
diction might offer a dollar-per-watt incentive up to a certain 
system size. For optimization purposes, this acts as a budget 
constraint because the marginal economics of a system larger 
than what is incentivized become much less appealing. 

Financing options such as power purchase agreements 
and loans are popular across the industry because they mit-
igate budget constraints. As long as the economic returns 
are adequate, many customers are able to access up-front 
financing. Property assessed clean energy (PACE) financing 
is a possible exception, as PACE funds are often capped at 
20% of the property value in commercial applications, which 
sometimes acts as a budgetary constraint for large commer-
cial rooftops. 

With a constrained cost, the financial return (revenue 
minus costs) for a system tracks closely with the total rev-
enue. The costs are tied to the system's dc nameplate value 
because the module costs, racking costs, electrical costs and 
installation labor are all directly related to the dc capacity 
rating. As a result, the objective that tends to matter most is 
maximizing the array’s specific yield: the revenue is tied to 
the energy (kWh) generated, while the costs, and therefore 
the capacity (kWp), are fixed. 

The design goals are similar in a capacity-constrained mar-
ket. If a developer can only obtain a certain quantity of modules 
per quarter, that developer will want to deploy them in a way 
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Area constrained  Solar Design Associates used a dual-tilt mounting system at 
Clark University’s Alumni and Student Engagement Center to maximize ground-
cover ratio, total system capacity and energy yield per unit of area.
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that derives as much finan- 
cial value as possible. This 
optimization exercise would 
mimic that for a budget- 
constrained application. 

Energy demand. This con-
straint is most common in 
residential arrays, where 
the homeowner uses only 
so much energy. It becomes 
particularly acute with net 
metering, since the designer 
must not only design to an 
annual energy budget, but 
also align the energy produc-
tion by month or even hour 
of the day. This type of opti-
mization exercise is all about 
system capacity. When there 
is only so much demand for 
energy, the size of the array is 
critical, especially since over-
production can waste energy. 

Two metrics matter here: 
energy usage and specific 
yield. First, the engineer 
must understand the usage demands, typically based on the 
off-taker’s energy bills. This can be complex based on when 
the customer’s bills are trued up, whether it is monthly, 
annually or every 15 minutes ( for demand charges). Next, 
the designer focuses on delivering that energy most effi-
ciently by maximizing specific yield. In residential applica-
tions, designers tend to have fewer tools at their disposal, 
as the roof area is often relatively constrained and the roof 
itself determines the tilt angle. 

In residential applications with energy-demand con-
straints, designers generally base their decisions on which 
roof surfaces to use and how close to get to shading obstruc-
tions. In commercial or ground-mount applications, opti-
mizing a system with energy-demand constraints often 
leads to wider row spacing and a higher tilt angle, as these 
options improve system yield and profitability.

Power injection to the grid. A power constraint is most 
common in utility-scale arrays, which inject the energy pro-
duced directly into the grid. In those situations, the grid 
operator often dictates the maximum instantaneous power 
the grid can handle at any time. As a result, there is a very 
clear power limit on what an array can produce, which the 
designer can achieve by simply matching the inverters’ rated 
output power to the grid’s requirements. 

Power-injection constraints can also arise when regu-
latory procedures change significantly based on system 

capacity. A jurisdiction might have an expedited permit or 
interconnection process for arrays up to 200 kWac, whereas 
larger systems are subject to a more demanding set of 
requirements. These policies can artificially limit system 
capacity. If the permitting process gets significantly more 
stringent above 200 kWac, you might decide to constrict the 
ac output power to 200 kW—even if the roof area would oth-
erwise support a 250 kWac system—just to keep the permit-
ting process simple and/or inexpensive. 

In this scenario, inverter ac power capacity is consid-
ered a fixed variable and dc system capacity becomes the 
key design variable. Since dc capacity determines system 
revenue and therefore profit, this variable drives financial 
performance. The designer incrementally increases the dc 
nameplate power while looking to maximize financial met-
rics. The marginal revenue of each group of modules drops 
successively, since the clipping losses get larger as the dc-
to-ac ratio increases. However, the designer can continue 
increasing array capacity as long as the marginal revenue 
covers the marginal cost of adding modules, racking and wir-
ing. Inverter power limiting is no longer a loss factor to mini-
mize, but instead is a necessary tradeoff to increase revenue 
and maximize the financial performance of the array. This 
optimization exercise tends to push the dc system capacity 
to 1.4–1.7 times that of the ac inverter capacity, depending 
on the array location.

Constraint-Based Design Optimization

Table 1  This table illustrates how the optimal system design varies based on different design 
constraints. While each of the constraint-based designs improves the net present value (NPV) 
relative to the reference design, there are significant differences among them. 

Array characteristics Reference system

Design constraint

Area Budget Power injection

Tilt angle (°) 20 5 30 20

Row spacing (ft.) 2.4 0.5 8 2.4

Area (acres) 2.85 2.85 4.5 3.92

Array capacity (kWdc) 1,000 1,391 975 1,377

Inverter capacity (kWac) 810 1,125 810 810

DC loading 1.23 1.24 1.20 1.70

Performance metrics

Specific yield (kWh/kWp) 1,532 1,474 1,581 1,390

Energy production (MWh/year) 1,531 2,050 1,542 1,931

Revenue (NPV) $2,205,000 $2,952,000 $2,220,000 $2,780,000 

Cost of system $1,440,000 $1,900,000 $1,440,000 $1,799,000 

NPV of system $765,000 $1,052,000 $780,000 $981,000 

Profit 53.1% 55.4% 54.2% 54.5%

NPV improvement vs. reference — 38% 2% 28%
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CALCULATING THE OPTIMAL DESIGN 
To illustrate the importance of constraints on system design, 
I will start from a reference design with fixed cost and reve-
nue assumptions and show how different design constraints 
lead to different optimal system configurations. For the pur-
poses of this exercise, I am using the project’s net present 
value (NPV) as the optimization objective. The details of the 
reference design are as follows:

System capacity: 1 MWdc
Array area: 2.85 acres

Array tilt angle: 20°
Array azimuth: 180°

Interrow spacing: 2.4 feet 
Location: San Francisco

In the scenarios that follow, I fix one of three major design 
constraints at a time—area, budget or ac capacity—while 
leaving the other two variables unconstrained. As shown in 
Table 1 (p. 25), this exercise results in three distinctly differ-
ent designs.

Area-constrained scenario. Here I fix the array area based 
on that of the reference design while adjusting other variables 
to maximize NPV. The most profitable system design results 
from packing the modules closely together and reducing the 
tilt angle. These two variables go hand in hand: by dropping 
the tilt of the modules, you can reduce the row spacing with-
out incurring a significant amount of interrow shading. 

Optimizing the area-constrained array results in a 5° tilt 
angle and a row spacing of 0.5 feet. Note that the lower tilt in 
this design reduces the specific yield by 4% compared to the 
reference design, from 1,532 to 1,474 kWh/kWp. However, 
the reduced spacing increases the system capacity by 40%. 
Therefore, the overall energy production grows by 35%. The 
area-constrained design is even slightly more profitable. 
While the 4% lower productivity would typically translate to 
a lower profit margin, the larger array is able to amortize the 
fixed costs over a larger base. As a result, the ROI of the sys-
tem is slightly better than that of the reference design. 

 Budget-constrained scenario. Here I fix the budget while 
giving the system free rein in terms of array area. In this case, 
the design goal is to maximize specific yield. As detailed in 
Table 1, raising the tilt angle to 30° and spreading the inter-
row spacing out to 8 feet increases the specific yield by 3%, 
from 1,532 to 1,581 kWh/kWp. 

Of course, expanding the array area does not come with-
out costs. Since our budget is fixed, I have accounted for this 
by decreasing the array capacity to account for the costs 
associated with the additional land requirements (modeled 
at $500 per acre per year) as well as the longer wire runs. In 
spite of the fact that the array area nearly doubles over that of 

the reference case, optimizing for specific yield in the budget-
constrained scenario still results in 2% improvement in NPV.

Power-constrained scenario. Lastly, I constrain the system 
based on capacity, assuming that the maximum allowable 
power injection to the grid is 810 kWac, but do not constrain 
area or budget. In this case, dc system capacity has a signifi-
cant impact on the overall system economics, since a larger 
dc system has greater revenue potential. Maximizing NPV 
in this scenario results in a dc system capacity of 1.38 kWp, 
which is a 1.7:1 dc-to-ac ratio. 

This design approach results in a significant amount 
of inverter power limiting, with clipping losses of approxi-
mately 9.1%. Yet a dc loading of 1.7 optimizes the profit of 
the array by maximizing revenue with an eye toward con-
trolling costs. While locations with higher insolation result 
in a lower dc-to-ac ratio, the optimal inverter loading will 
still be considerably higher than that of the reference design.

 Cross-applying the results. Based on these scenarios, we see 
that applying three different design constraints to one loca-
tion, with one set of cost assumptions, leads to three very dif-
ferent optimal designs. It may seem like a counterintuitive 
or even flawed premise that a single set of cost and revenue 
assumptions can lead to different optimal designs just based 
on the primary design constraint, but we can test this premise 
by cross-applying the optimal designs. 

To illustrate, let us swap the area-constrained array with 
the budget-constrained array and evaluate how the designs 
perform when applied to a different set of design constraints. 
On the one hand, the area-constrained design results in tilt 
of 5° and spacing of 0.5 feet, effectively maximizing power 

Optimized for
area constraint

tilt 5º, spacing 0.5'
NPV = $1.05MM

Cross-applied in 
 different scenario

tilt 5º, spacing 0.5'
NPV = $0.62MM

Optimized for
budget constraint

tilt 30º, spacing 8'
NPV = $0.78MM

Cross-applied in
different scenario

tilt 30º, spacing 8'
NPV =  $0.29MM
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Figure 2  This figure illustrates how NPV drops when you 
apply one set of constraint-based design assumptions in a 
scenario with a different set of constraints.

Constraint-Based Design Optimization
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density to increase revenue. On the other 
hand, the budget-constrained design results 
in a 30° tilt and an 8-foot-wide row spacing, 
effectively maximizing the specific yield of 
the array. Though the increase in profit is 
greatest in the area-constrained scenario, 
the budget-constrained design still gener-
ates more profit than the reference design. 

Figure 2 shows what happens if we swap 
the design choices between these two appli-
cations, which causes the economics of 
both arrays to fall greatly. Applying the area- 
constrained design (low tilt and tight spac-
ing) to the budget-constrained scenario 
results in an array with the same capacity 
as the reference design but a lower energy 
yield; as a result, the system NPV drops 40% 
to $620,000. Meanwhile, applying the budget-
constrained design (high tilt and wide spac-
ing) to the area-constrained scenario results 
in a 50% smaller array capacity; as a result, 
the NPV drops to under $300,000.  

OPTIMIZATION OBJECTIVES 
The selection of the design objective is important to any 
optimization process. In the previous examples, I maxi-
mized profit dollars by optimizing for NPV. Other common 
optimization objectives include profit margin, levelized cost 
of energy (LCOE) and initial cost. While these all seem like 
good objectives, choosing one over another can lead to a dif-
ferent design outcome.

To illustrate, let us consider the difference between opti-
mizing for profit dollars and for profit margin in the power-
constrained scenario above. As shown in Figure 3, optimizing 
for NPV results in a dc-to-ac ratio of 1.7:1, whereas optimizing 
for profit margin results in a dc-to-ac ratio of 1.4:1. Based on 
these results, we see that increasing the dc-to-ac ratio above 
that of the reference design (1.23) initially improves both 
profit margin and profit dollar. This is because increasing the 
dc loading initially improves both specific yield and profit-
ability. Above a dc loading value of 1.4, however, profit margin 
starts to decline and profit dollars accrue more slowly. This is 
because the specific yield and revenue associated with each 
new group of modules starts to fall due to inverter power lim-
iting. Because of these losses, it ceases to be profitable to add 
modules above a dc loading of 1.7.

The fact that different optimization objectives could lead 
to different designs is not self-evident. After all, when arrays 
underperform, all performance metrics generally suffer. For 
example, module or inverter failures or unexpected shad-
ing all reduce the array’s profitability and raise the system’s 
LCOE. This suggests that optimizing PV system designs 

based on one performance metric will optimize others as 
well. Figure 3 illustrates that this is not necessarily the case. 
In this example, the decision about whether to optimize 
based on profit margin or NPV will swing system capacity by 
more than 20%, from a dc loading of 1.4 to 1.7, respectively. 

Which of these objectives will serve you better? It depends. 
If money is constrained, then you want to spend each dollar as 
effectively as possible, in which case profit margin is a better 
objective to go for. If money is not so tight, you might prefer to 
spend a bit more and receive more profit dollars. 

If we take a step back, we can see that the design objec-
tives for PV power systems are far less complex than those 
in other industries. Consider the many objectives that engi-
neers must consider when designing a car: fuel efficiency, 
torque, acceleration, styling, driver visibility, weight, turn 
radius, length, cost, storage area, range, crash safety rating, 
reliability and so forth. For better or worse, electricity is a 
commodity. By definition, therefore, generating the lowest-
cost electricity is generally the singular focus of PV system 
design activities. This is true even when you are making 
more-nuanced design decisions, such as optimizing for reli-
ability or to streamline O&M activities. The solar industry’s 
primary optimization objective is to reduce LCOE, regard-
less of whether designers are optimizing based on initial or 
future costs.

Paul Grana / Folsom Labs / San Francisco, CA /  

paul.grana@folsomlabs.com / folsomlabs.com 
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Figure 3  This figure illustrates how the optimal system design can vary accord-
ing to your chosen optimization objective—in this case, profit margin versus NPV.

Inverter dc loading

Pr
of

it 
m

ar
gi

n 
(R

O
I %

)

54

56

58

60

50

48

52

46
1.1 1.2 1.3 1.4 1.5 1.6 1.81.7

Profit margin (left axis)

NPV (right axis)

800,000

900,000

1,000,000

1,100,000

600,000

500,000

700,000

Pr
of

it 
do

lla
rs

 (N
PV

 $
)

Region I: 
profit %

and NPV improving

Region II: 
profit % declining 
and NPV improving

Region III:
both metrics

declining

http://www.folsomlabs.com



