ARMI

Welcome to RMI's IRA Bootcamp for Economic Development Practitioners

RMI is an independent, nonprofit organization of experts accelerating the clean energy transition. We are transforming the global energy system to secure a clean, prosperous, zero-carbon future for all.

RMI's Formula for Impact

Scaling Solutions Around the World

Decarbonizing Key Sectors

USING **Powerful Market Catalysts**

Capacity Building + Education

Policy Technology Communications Climate Climate Aligned Intelligence Finance

Buildings

Transportation

Industry

Let's Meme...

IRA Bootcamp Objectives

(1) Learn what matters the most with the IRA for your day-to-day needs

2 Become the most knowledgeable person in your organization on IRA

(3) Have the tools to immediately apply IRA & engage with companies

Meet the RMI Team

Aaron Brickman

Alisa Petersen

Lachlan Carey

Leia Guccione

Matthew Popkin

Nathan lyer

Taylor Krause

Whitney Mann

RMI Agenda – January 16, 2024 (Day 1)

1:00 p.m.	Workshop Welcome
1:45 p.m.	IRA Overview
2:45 p.m.	Direct Pay, Transferability & Electricity Tax Credits
3:55 p.m.	BREAK
4:05 p.m .	Permitting, Siting, Community Benefit Agreements
5:10 p.m.	Beverages and Barriers: Breaking Down Barriers to
	Investment
6:30 p.m.	Social Hour (Top Golf Lounge, 1 st Floor Market Hall)

RMI Agenda – January 17, 2024 (Day 2)

8:00 a.m.	Light Breakfast
8:30 a.m.	Opening Remarks
8:45 a.m.	Reinvesting in Brownfields & Energy Communities for the Clean Energy Economy
9:50 a.m.	BREAK
11:00 a.m.	Public Financing, Green Banks & Greenhouse Gas Reduction Fund
11:15 a.m.	Green Hydrogen & 45V
12:30 p.m.	LUNCH
1:15 p.m.	Cleantech manufacturing & 48C/45X
2:30 p.m.	Break
2:45 p.m.	Case Study Breakouts: Leveraging the IRA
3:45 p.m.	Workshop Wrap-Up
4:30 pm	End of Day

Reminders

- Housekeeping restrooms; emergency meeting location; medical emergency
- Media Release
- Workshop Survey
- Speaker slides to be sent after session



Rules of Engagement

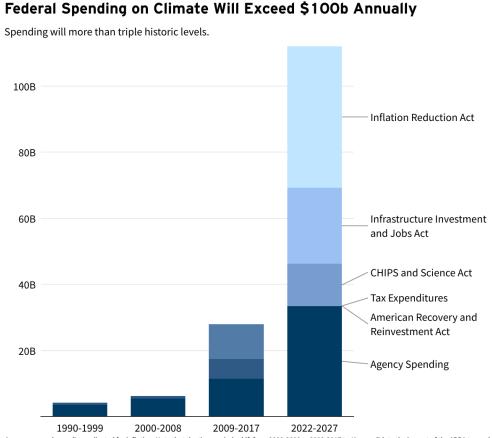
Be present

 Respect confidentiality

ந்ஜி Sharing needed

RMI - Energy. Transformed.

Participant Introductions – Speed Mingling

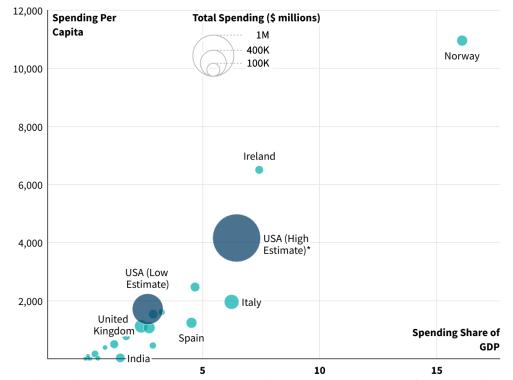

Please share your Name, Affiliation, City/Region (2 mins each pair & then rotate)

The Inflation Reduction Act

	The second s	CARLE AND TRANSPORT SPECIFICATION AND AND	
		иа кисло Moet: <u>Anerhoy 253, 48.5A</u>	Production of the second secon
	Bemnzrlaition United States of America	\$ \$1.2 T	
	Clean energy projects and economic de	Pears, 2221610	
gy. Transformed Pr	esented by: Alisa	Petersen and L	achlan Carey

IRA+IIJA+CHIPS:

Biden administration has passed arguably the most ambitious suite of climate policies anywhere


Average annual spending, adjusted for inflation. Note that the time periods shift from 2000-2008 to 2009-2017 to 1) consolidate the impact of the ARRA to one bar, and 2) address missing data between 2018-2021. Values are based on RMI estimates using agency spending data from the GAO, tax expenditure data from the JCT, and internal analysis on 2021-2022 legislation.

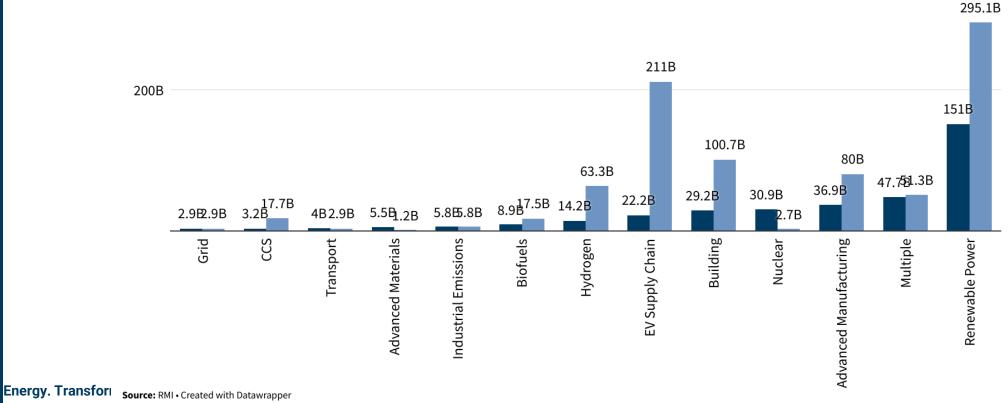
Source: RMI · Created with Datawrapper

Clean Energy Spending Among Developed Countries since 2020

Even using the CBO's conservative estimates, the US has dedicated the most spending towards clean energy policies since Covid-19 and is among the largest relative to population and GDP. This grows significantly when accounting for uncapped tax credits.

Spending figures are for clean energy investment support only and exclude energy affordability measures. *Uses the Goldman Sachs \$1.2 trillion estimate of overall IRA incentives, ratehr than the official CBO \$369 billion estimate.

Chart: RMI Graphic • Source: IEA Government Energy Spending Tracker


The Headline Numbers Undersell its Potential:

Uncapped tax credits could lead to ~\$1 trillion spending bill

High-Demand Sectors Could See Significantly Larger Funding Than Anticipated Thanks to **Uncapped Tax Credits**

Billions of US dollars

📕 CBO Estimate 📕 Climate-Aligned Estimate

IRA supports clean energy across all sectors

Buildings

- Made existing tax credits
 more generous
- Created new rebates for residential buildings

Transportation

- Created new tax credits for EVs and EV chargers and made existing tax credits more stringent
- Developed new grants programs for heavy duty vehicles

Electricity

- Created more generous tax credits for renewables
- Developed new loan and grant programs for transitioning energy communities

Industry

- Created new hydrogen tax credit
- Created new manufacturing production tax credit

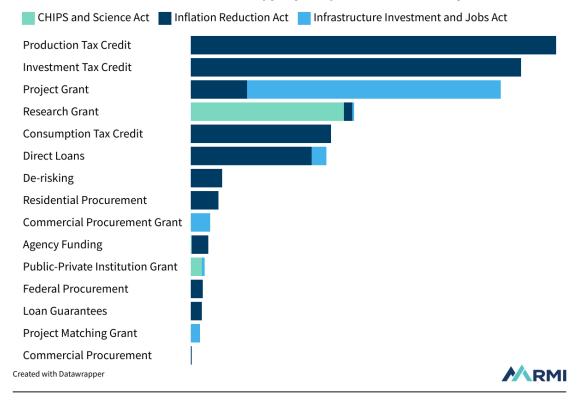
System Level

- Created elective pay and transferability for tax credits
- \$27B for green financing

Energy. Transformed.

IRA was designed to spur domestic manufacturing and a clean energy workforce

- Must meet battery and critical mineral requirements to get credit (30D)
- Can only get direct pay if domestic content requirements are met (48/45)
- Only receive full value of credit if prevailing wage and apprenticeship requirements are met (48, 45, 179D, 45L, 45Q, 48C, 45U, 30C, 45V, 45Z)



- Generous manufacturing tax incentives (48C/45X)
- Bonus incentives for domestic content (48/45)
- Grants and loans for retooling existing manufacturing

"Public led, private enabled"

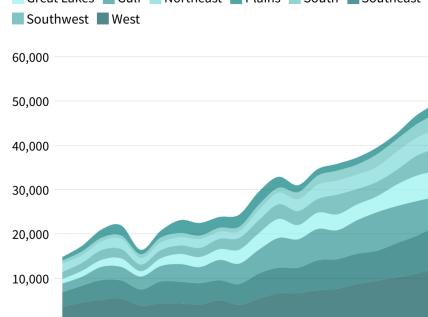
Relies overwhelmingly on crowding in private investment through tax incentives and capital derisking.

Biden's Green Industrial Strategy by Legislation & Policy Instrument

Loan Program Office Projects, by Technology

Millions of dollars in loan guarantees & direct loans

s of August 3, 2023. Includes active conditional loan co	mmitments.		
Bioenergy & Biofuels Projects		132.4	
Storage & Transmission Projects		343	
Geothermal Energy Projects		545.5	
Wind Energy Projects		1,688	
Photovoltaic Solar Projects		4,650	
Concentrating Solar Power Projects		5,102	
Hydrogen Projects	504.4		
Advanced Fossil	1,040		
Virtual Power Plant	3,000		
Critical Minerals	3,075		
Advanced Nuclear Energy Projects	5,100		
Advanced Vehicles Manufacturing Projects	13,014.1	7,815	
	Biden	Obama & Tru	mp


Energy. Transformed.

Investment in the Clean Energy Transition is Taking Off

Clean energy investment in the U.S. has quadrupled since 2018

In the Great Lakes, investment has increased over 800% from just \$1 billion in the first quarter of 2018, to \$8 billion in Q3 2023. Investment has grown 675% in the South, and nearly 500% in the Gulf.

Great Lakes 📕 Gulf 🔜 Northeast 📕 Plains 🔛 South 📕 Southeast

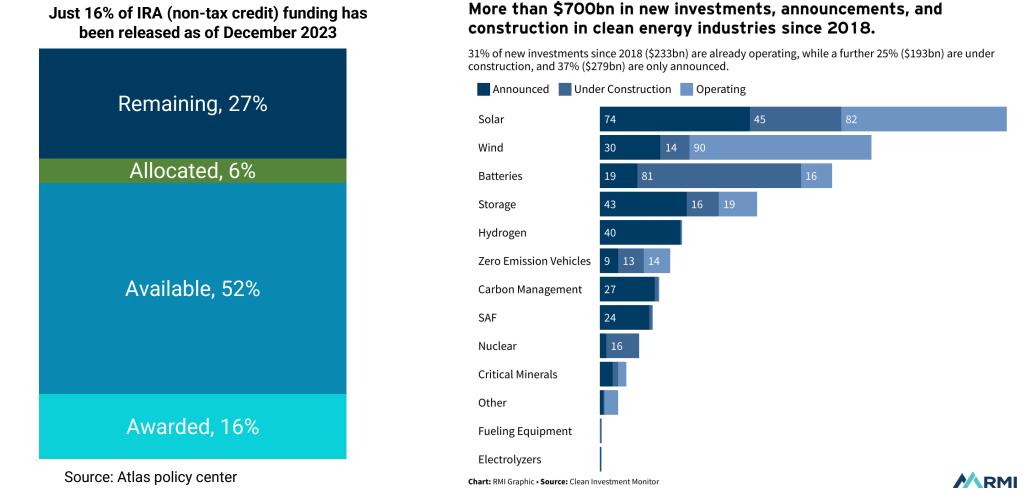
 2018-Q1
 2018-Q4
 2019-Q3
 2020-Q2
 2021-Q1
 2021-Q4
 2022-Q3
 2023-Q2

 Chart: RMI Graphic • Source: Clean investment Monitor • Created with Datawrapper
 Image: Clean investment Monitor • Clean investment Monitor •

Solar and battery manufacturing have been the big winners since passage of the IRA

Growth in cumulative investment since 2018, indexed to Q2-2022. (2022-Q2=100)

Energy. Transformed.

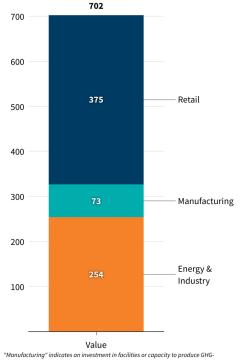

0

Source: Repeat Project

³⁰⁰ Battery Manufacturing 280 260 Solar Manufacturing 240 220 Storage 200 EV Sales 180 EV Passage of the 160 . Manufacturing Solar 140 Rooftop Solar Heat Pumps 120 100 80 60 40 20 2018 2019 2020 2021 2022 2023 Chart: RMI Graphic • Source: Clean Investment Monitor • Created with Datawrapper

Announcements first, funding later?

Most IRA-related spending to date are private investment announcements with the majority of public funding still on its way.

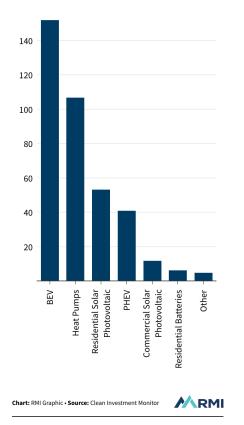

Energy. Transformed.

Who are the early cleantech leaders?

Across retail, manufacturing, energy, and industry sectors, EV, battery and solar projects have seen the bulk of new investment.

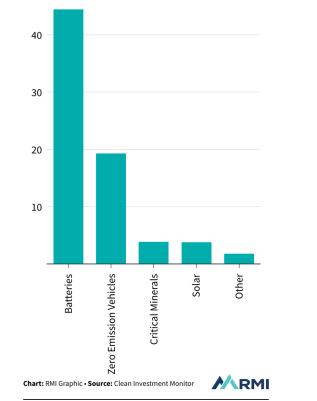
Despite the headlines, most clean energy investment since 2018 is in the retail sector

Only 10% of new investment since 2018 is in manufacturing.

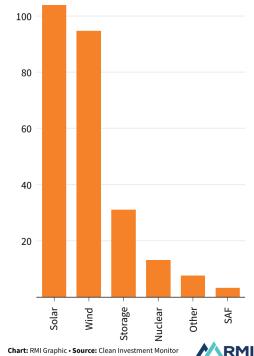


"Manufacturing" indicates an investment in facilities or capacity to produce GHGreducing technology. "Energy and Industry" refers to the deployment of technologies that reduce GHG emissions in the bulk production of energy or industrial goods or that capture ambient carbon dioxide. "Retail" refers to the purchase and installation of technology by individual households and businesses.

Chart: RMI Graphic • Source: Clean Investment Monitor

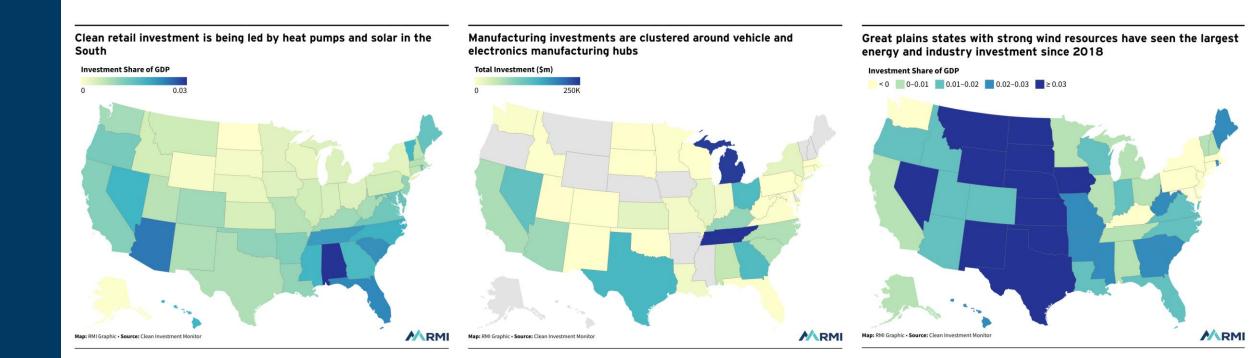

Retail investment is led by electric vehicles and heat pumps

US consumers have spent nearly \$200 billion on battery and plug-in hybrid vehicles since early 2018, and a further \$100 billion on heat pumps.


Manufacturing investment is dominated by the EV supply chain

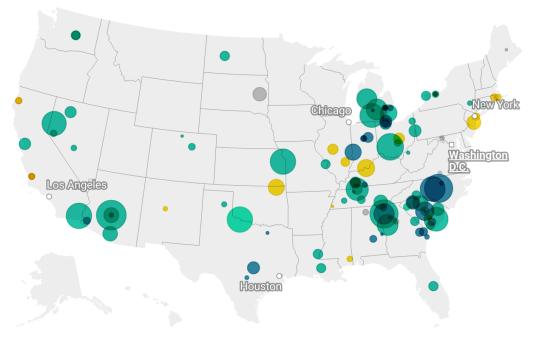
Companies have invested over \$100 billion on EV, battery, and critical minerals projects since early 2018.

Solar and wind projects make up the bulk of energy and industry investments.


Developers have invested roughly \$200 billion in solar and wind projects since early 2018, and a further \$31b in storage.

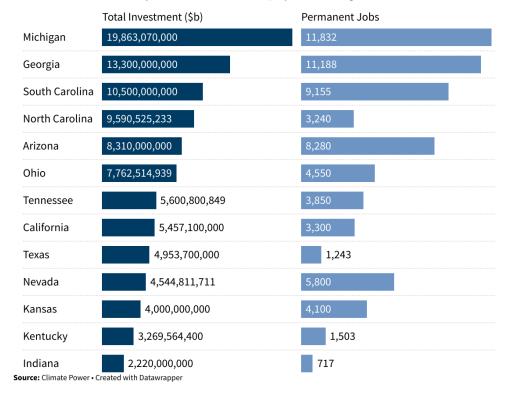
Energy. Transformed.

Where is the investment going?

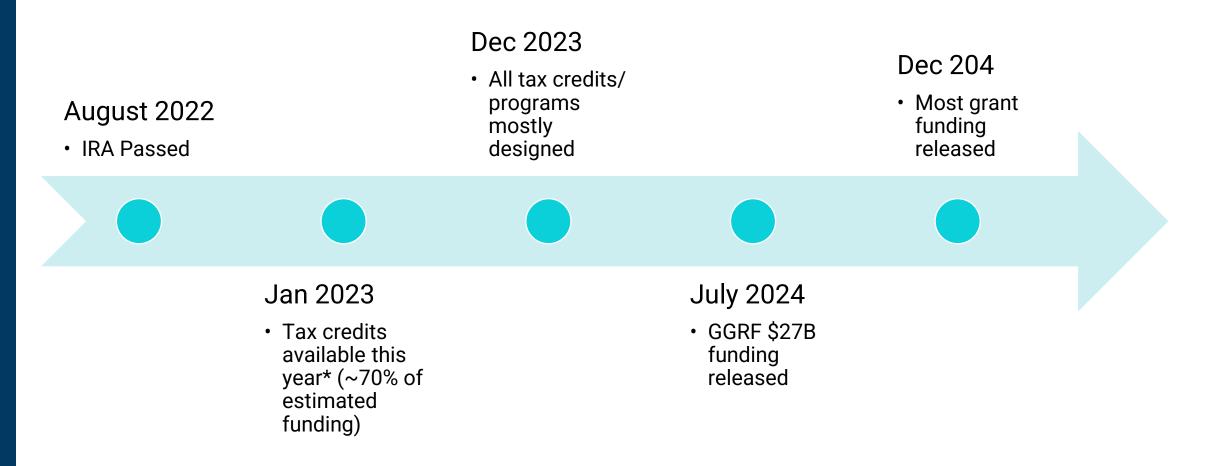

The geographic distribution of clean energy investment in the US differs by type of investment: retail is being led by the South, manufacturing by the Midwest and Southeast, and energy production by the Great Plains

Manufacturing investment has so far been concentrated in select states

Over \$120 billion in new cleantech manufacturing investments have been announced since passage of the IRA


Batteries Clean Tech Electric Vehicles Electrical Grid Distribution And Transmission Home energy efficiency and electrification Hydrogen Rail Renewables Renewables Manufacturing Sustainable Aviation Fuel Transmission & Grid

Source: Climate Power • Created with Datawrapper


Michigan, Georgia, and the Carolinas Have Been the Early Winners in the Cleantech Investment Bonanza

Announced investment and job numbers in cleantech projects since August 2022.

Energy. Transformed.

2023 was all about designing IRA, 2024 is the year of project deployment

Energy. Transformed.

*Most tax credits not designed, so while available difficult to make sure criteria is met for this year

Electricity Tax Credits, Direct Pay & Transferability

Presented by Alisa Petersen and Matthew Popkin

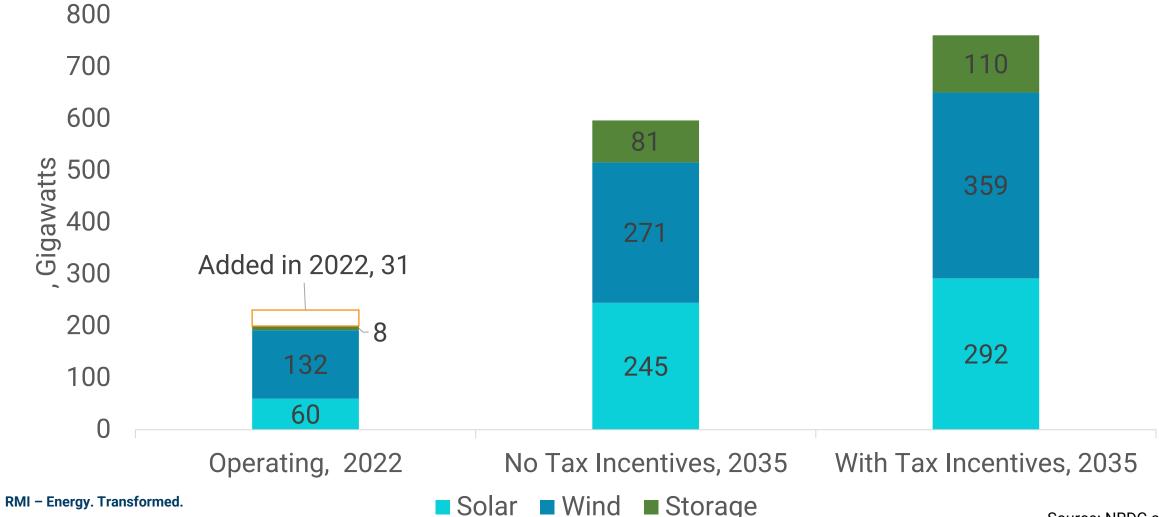
RMI – Energy. T

What does the clean energy transition mean for jobs in my community? How can my community attract the next data center from a major tech company?

What are

communities

about?


thinking • •

What types of new manufacturing will be created in my community?

Can we co-locate new energy technologies with new business opportunities to attract companies with ESG goals?

RMI - Energy. Transformed.

Clean electricity capacity growth is expected to almost quadruple by 2035 due to IRA tax credits

Source: NRDC analysis

The IRA expanded the two tax credits that have been the primary economic drivers for renewable energy projects – and extended them to 2035

Production Tax Credit (45)

10-year credit on the energy produced (now includes solar)

IRA created direct pay – a gamechanger for tax-exempt entities pursuing clean energy projects

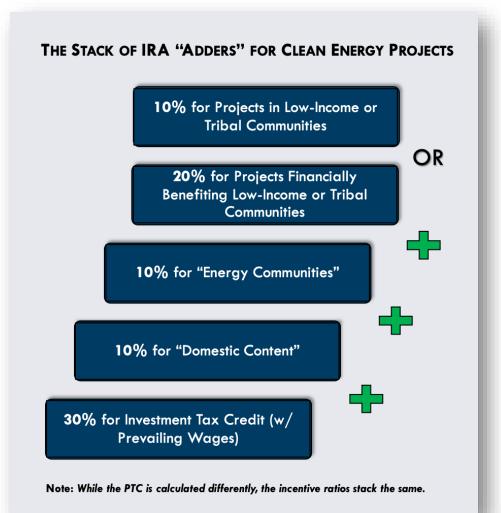
BEFORE

- Clean energy tax credits only available for entities with tax liability
- Cities and other tax-exempt entities needed to create partnerships with entities with tax liabilities or sign third-party agreements to receive some of the benefits
- This often resulted in fewer incentives passed on to the taxexempt entity or fewer options to own your energy

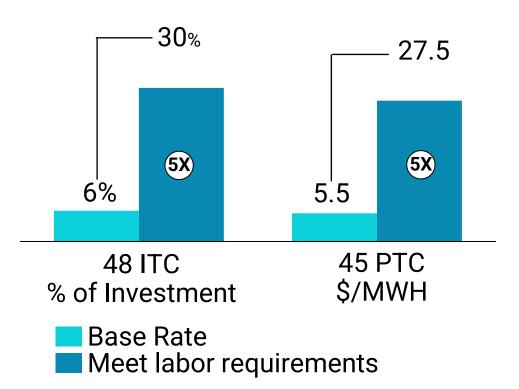
NOW

 Direct Pay (aka Elective Pay) allows tax-exempt entities to receive the value of the credit as a direct payment from the IRS

Entities not eligible for direct pay can utilize transferability, which lowers transaction fees


BEFORE

- High transaction fees for lawyers and bankers to set up complicated tax equity deals
- Limited universe of tax equity investors meant entities seeking tax-equity had to forfeit a higher % of the credit
- IOUs had almost no tax liability so rarely owned renewables


NOW

- Simpler transactions through transferable credits market and lower transaction fees
- Tax equity market expands as other entities besides large banks can participate in transfer market

New federal tax credit "adders" now incentivize projects that invest in US communities

IRA electricity tax credits were designed to support the creation of new good-paying jobs

Prevailing wage:

A prevailing wage is the combination of the average basic hourly wage rate plus any fringe benefits rate

Varies by specific labor classification, type of construction being performed, and geographic area

Apprenticeship Requirement:

Apprentices must account for 15% of total labor hours starting in 2024

How would new incentives impact a local project?

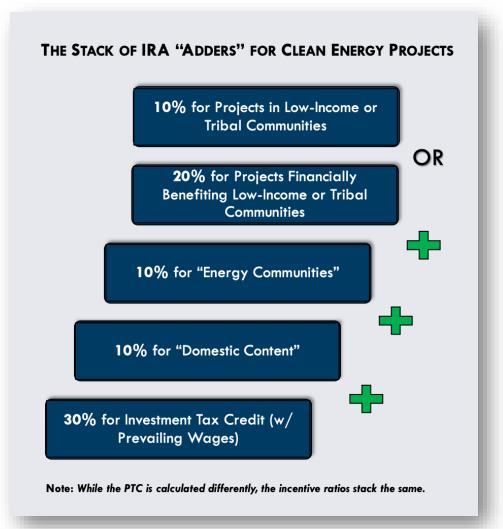
Size:

• 2 MW

Owner:

- City of Milwaukee
- Anticipated Project Start:
- Q1 2025
- Type of project:
- Community solar

Structure of Community Solar:


 100% of subscription goes to low-income households

Location of project:

- Milwaukee Department of Public Works HQ
- Solar panel manufacturer:
- Helio Solar Works (manufactured in Milwaukee)

Let's walk through the new clean energy incentive stack for Milwaukee's proposed project

The "Domestic Content" incentive can be leveraged in 2 key ways – for your project and for your economy

For Your Project

- What: "Domestic Content" incentivizes investments into US-made materials
- How Much: 10% credit for eligible clean energy project costs
- Requirements: All iron and steel for significant structural components + increasing amount of manufactured technical components (ex. solar trackers, panels, and inverters)

For Your Economy

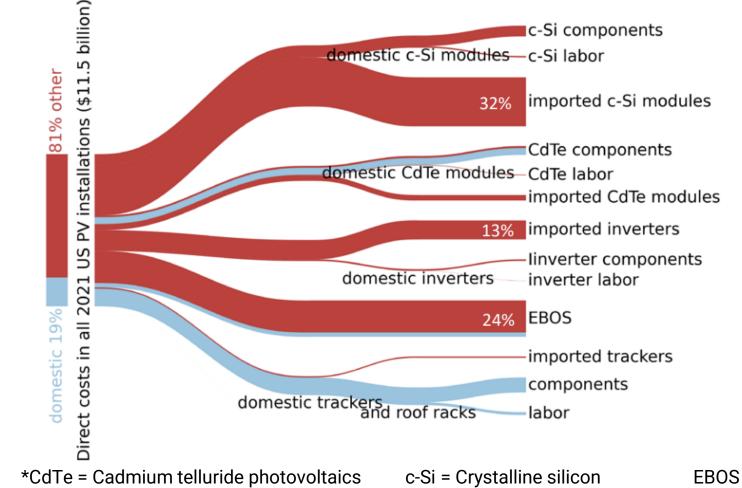
- Why: Intended to scale US manufacturing for iron, steel, and many other clean energy project components
- **Opportunity**: Plan now to attract energy sector-related businesses and manufacturing jobs where demand for US-sourced materials is expected to increasing nationwide
- Impact to date: Since passage of IRA, more than 240 GW of manufacturing capacity announced across solar supply chain, representing 22,000 potential jobs and more than \$12B in announced investment

Expect demand to rise quickly across the US energy sector for domestically manufactured components

Inflation Reduction Act Domestic Content Requirements:

Year	% of Components for Clean Energy	% of Components for Offshore Wind	Steel & Iron
2024	40%	20%	100%
2025	45%	27.5%	100%
2026	50%	35%	100%
2027	55%	45%	100%
After 2027	55%	55%	100%

The requirements for "direct pay" further increase the economy-wide demand for domestic content

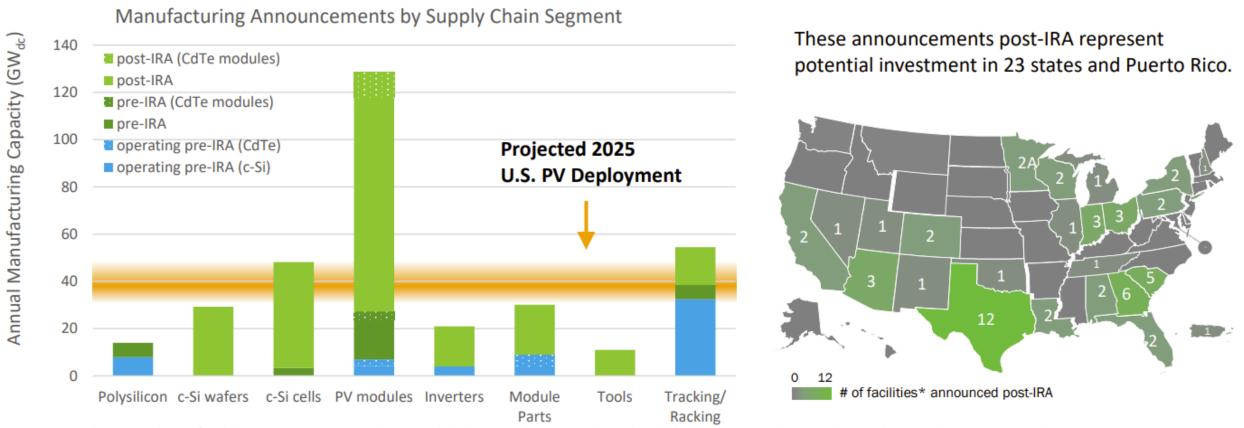

What This Means

 Projects starting construction after 2025 that are larger than 1 MW <u>must</u> meet domestic content requirements or they will not be able to claim the clean energy tax credits

Exemptions

- If product or component is unavailable
- If it increases the cost of the project by 25% or more

The domestic manufacturing market must grow to meet this requirement



EBOS = electric balance of system

RMI – Energy. Transformed.

Source: NREL

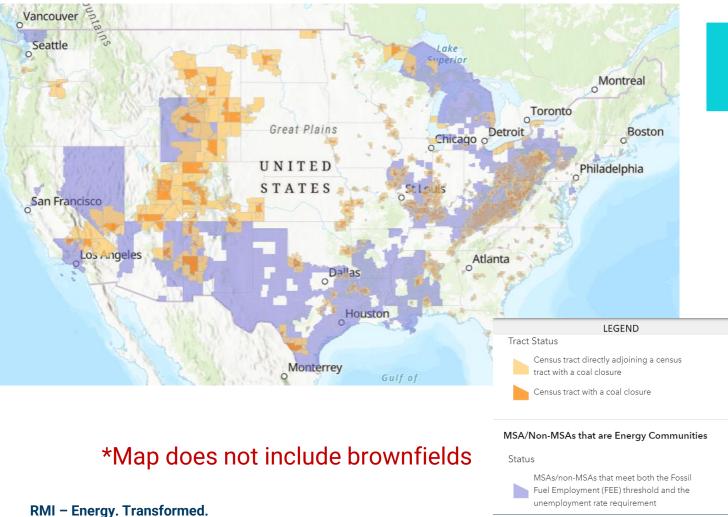
Since IRA passed, \$12B of investments have been announced for manufacturing capacity across the solar supply chain, but more is needed

Sources: Internal DOE tracking of public announcements and BNEF Global PV Market Outlooks and Wood Mackenzie and SEIA Solar Market Insights Q2 2022 and Q2 2023. *Not all announcements include facility locations, job, or investment numbers. See: <u>Building America's Clean Energy Future | Department of Energy</u>

Applying "domestic content" incentive and requirements to Milwaukee project

Are we eligible for 10% domestic content adder?

• Solar manufacturer: Helio Solar Works


Are we concerned about losing direct pay?

- Owner: City of Milwaukee <--eligible for direct pay
- Project size: 2 MW <--large enough to have to meet domestic content requirements to get direct pay
- Anticipated project start: Q1 2025 ← within timeframe where domestic content requirements is required

RMI – Energy. Transformed.

"Helios Solar Works is headquartered in Milwaukee, Wisconsin. We manufacture our modules using materials sourced from regional and U.S. suppliers **whenever possible**."

Energy Communities map 2023

Example Project:

Location: Milwaukee Department of Public Works HQ

Not eligible for 10% energy community bonus!

The Low Income Communities Bonus is the only adder that is not guaranteed

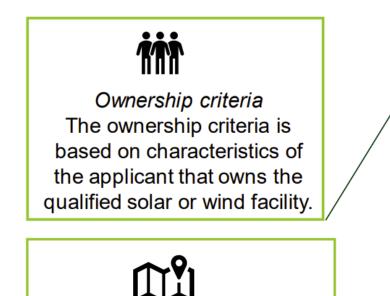
Maximum net output for projects is 5 MW

Annual capacity limitation is capped at 1.8 GW

10-20% bonus depending on criteria

Requires applying and being selected to receive credit

The Low-Income Communities Bonus Credit Program 48(e) was oversubscribed in 2023


Category 1: Located in low-income community	Category 2: Located on Indian Land	Category 3: Qualified Low- Income Residential Building Project	Category 4: Qualified Low- Income Economic Benefit Project
10% Adder	10% Adder	20% Adder	20% Adder
2023 Allocation:	2023 Allocation:	2023 Allocation:	2023 Allocation:
700 MW	200 MW	200 MW	700 MW
Applications:	Applications: 42	Applications: 160	Applications:
4,258 MW (608%)	MW (21%)	MW (80%)	3,934 MW (562%)

Deep Dive on Category 1 and Category 4

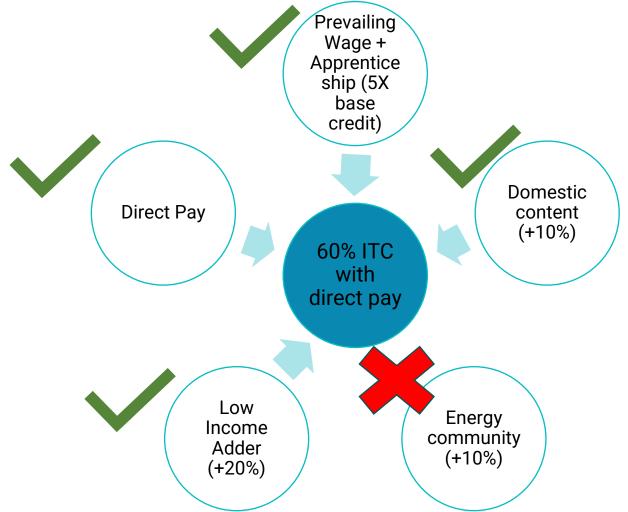
Category 1: Eligible residential behind the meter – Additional selection criteria	 Capacity: 245+ MW Applications: 84 MW 	Application still open for 161 MW
Category 1: Eligible residential behind the meter	 Capacity: <245 MW Applications: 345 MW 	Fully subscribed, <u>70%</u> of applicants received allocation
Category 1: Other Eligible LI Community Project – Additional Selection Criteria	 Capacity: 105+ MW Applications: 777 	Fully subscribed, <u>27%</u> of applicants received allocation
Category 1: Other Eligible LI Community Project	 Capacity: <105 MW Applications: 3,052 MW 	Fully subscribed, no applicants received allocation
Category 4: Qualified Low-Income Economic Benefit Projects – Additional Selection Criteria	 Capacity: 350+ MW Applications: 821 MW 	Fully subscribed, <u>85%</u> of applicants received allocation
Category 4: Qualified Low- Income Economic Benefit Project	 Capacity: <350 MW Applications: 3,113 MW 	Fully subscribed, no applicants received allocation

Meeting additional selection criteria is critical to receiving allocation

Meeting both additional selection criteria would almost guarantee allocation

Geographic criteria The geographic criteria is based on the county or census tract where the facility is located.

- Tribal enterprise
- Alaska Native Corporation
- Renewable energy cooperative
- Qualified renewable energy company
- Qualified tax-exempt entity

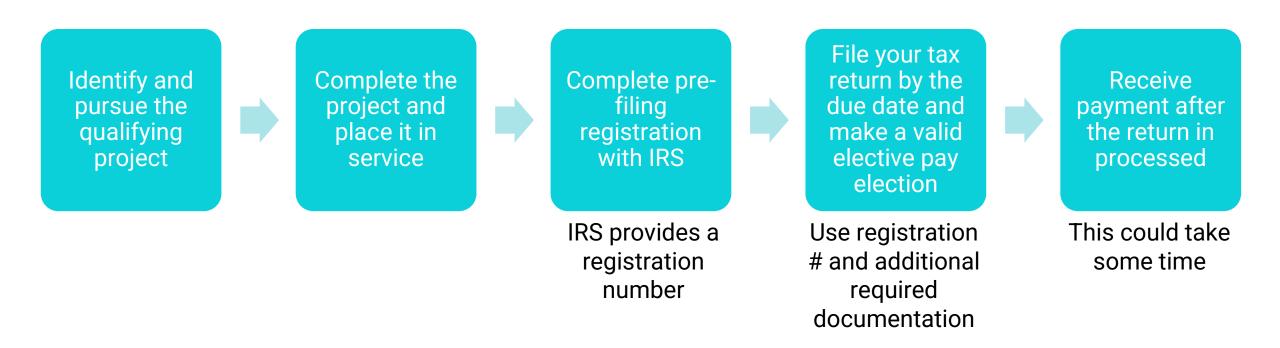

 Persistent Poverty County
 Climate and Economic Justice Screening Tool (CEJST) Energy Category

Let's go back to this example project

Design decisions could be the difference between getting 20% off your project cost or not

Does it meet low-income community Does it meet additional selection criteria to make the project more competitive? requirements to qualify for category 1? Location of Project: Department of Public Works HQ Location of Project: Milwaukee **Owner: City of Milwaukee** Department of Public Works HQ Ownership Criteria? -- Yes, qualified tax exempt entity Location Criteria? -- Yes, in CEJST designated area Does it meet economic benefit LEGEND Additional +requirements to qualify for category 4? Search X Selection Category 1 Eligibility 3850 N 35th St, Milw... 🗙 🔍 Criteria Tract Status Geographic 屳 Structure of community solar: 100% Census tracts that meet the New Option 1 Market Tax Credit Program's threshold **CEJST Energy** of subscription goes to low-income for Low Income households Ð Additional Selection Criteria | Geographic Your selected location in Census Tract **Option 1 | CEJST Energy** 55079004700, in Milwaukee County, Yes, if project is structured to reduce Wisconsin meets the Climate and Tract Status = 1 of 3 energy bills by 20% Census tracts that meet the Climate and Economic Justice Screening Tool's threshold for disadvantage in the Energy Burden category

This example project would likely get more than 2X as much funding as it would have before IRA

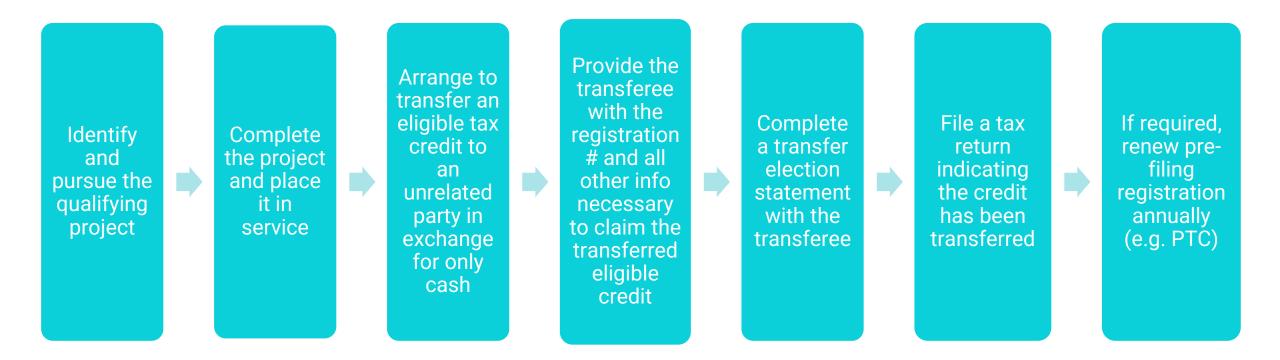

Elective Pay treats the amount of the credit as a payment of tax and refunds any resulting overpayment

 Eligible Entities: All tax-exempt entities including economic development agencies, states, rural electric coops, municipal utilities, cities, counties, water districts, school districts, public universities hospitals, and tribal governments

• Eligible Credits:

Energy Credit (48)	Renewable Electricity Production Credit (45)	Commercial Clean Vehicle Credit (45W)	Zero-emission Nuclear Power Production Credit (45U)	Advanced Manufacturing Production Credit (45X)
Clean Hydrogen Production Credit (45V)	Clean Fuel Production Credit (45Z)	Carbon Oxide Sequestration Credit (45Q)	Credit for Alternative Fuel Vehicle Refueling / Recharging Property (30C)	Qualifying Advanced Energy Project Credit (48C)

Direct pay requires close attention to the process – there is little room for error


Transferability allows entities to transfer all or a portion of credit to a third-party buyer in exchange for cash

• Eligible Entities: Entities not eligible for direct pay

• Eligible Credits:

Energy Credit (48)	Renewable Electricity Production Credit (45)	Commercial Clean Vehicle Credit (45W)	Zero-emission Nuclear Power Production Credit (45U)	Advanced Manufacturing Production Credit (45X)
Clean Hydrogen Production Credit (45V)	Clean Fuel Production Credit (45Z)	Carbon Oxide Sequestration Credit (45Q)	Credit for Alternative Fuel Vehicle Refueling / Recharging Property (30C)	Qualifying Advanced Energy Project Credit (48C)

Transferring eligible credits requires a buyer and creating an established new market

What are you thinking about now that we've covered the basics of the clean energy tax credits, direct pay, and transferability?

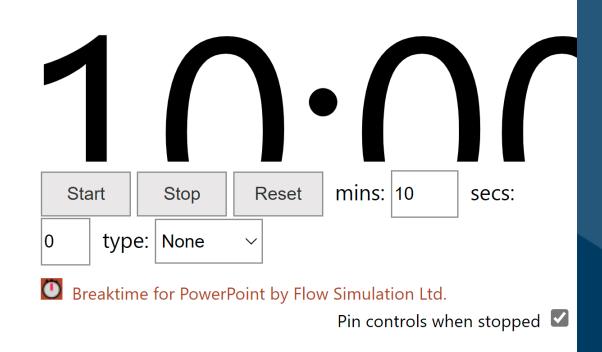
1. Relation to Current Role:

- I see a direct intersection between my job and most or all of these incentives
- I don't think any of this is relevant to my job

2. Community Readiness:

- My community is already planning with these in mind
- My community has not been planning with these in mind

3. Questions:


- This was a lot I'm still trying to digest this and don't know what questions to ask yet
- I was already an expert in this and have zero questions
- I have many questions from this discussion

Questions?

Break

Time Remaining

RMI – Energy. Transformed.

Permitting, Siting, Community Benefit Agreements

Matthew Popkin and Nathan Iyer

How we build, where we build, and who is impacted from what we build can make or break a project

Permitting

- How a project is built or developed (and/or what approvals are necessary to proceed)
- Level: Local, regional, state, federal

Siting

- Where a project is built or developed
- Level: Local, regional

Community Benefits Agreement

- A formal arrangement (i.e. contract) between a project developer and community-based organizations that represents those impacted by a project (and/or the broader community overall)
- Level: Local

Session Objectives

Why does this matter?

Explore how permitting, siting, and community engagement impact clean energy projects and clean energy manufacturing

What can we really do about it?

Understand the realities of the current processes as well as best practices to factor into project planning to best position your community and/or region for success 3

What's already been done?

Break down your roles in this process and learn from peers about how to navigate complex situations

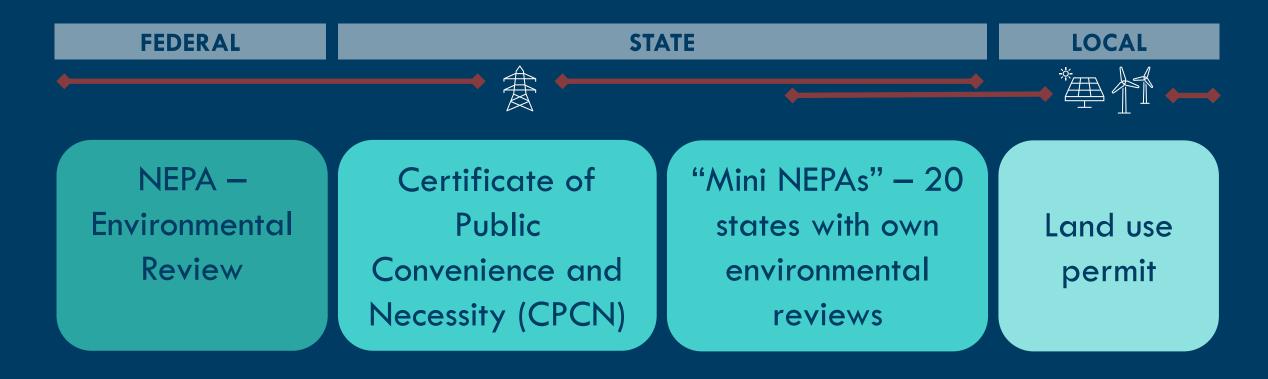
Seeing the forest for the trees

Cost, Time, and Viability:

- How long a project takes to get approval, address community and stakeholder concerns, and resolve any legal issues impacts project cost and, potentially, even the project's viability
- This is not unlike other economic development projects but there are a few differences

Community Consent:

- Energy and transmission projects often require the consent of the communities in and around their area of operation
- Construction of transmission lines, in particular, often must run across private property


Regional Approvals:

- A power-generating project requires approval from the transmission network to connect to the grid, creating another "permit" layer for the project
- Most transmission networks use a "queue" system, where developers' interconnection applications are considered sequentially

What governs where, what, and how you build new projects in your community?

Permitting for large energy projects occurs at federal, state, and local levels

These permitting processes often include, if not require, a process for stakeholder engagement

NEPA requires considering alternative siting & final document proposes route

Environmental review & CPCN processes often articulate stakeholder engagement processes

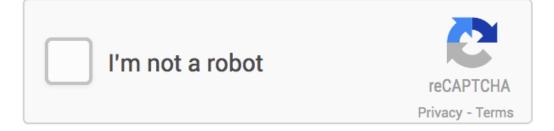
Public and other stakeholder sentiment informs outcomes of NEPA and CPCNs

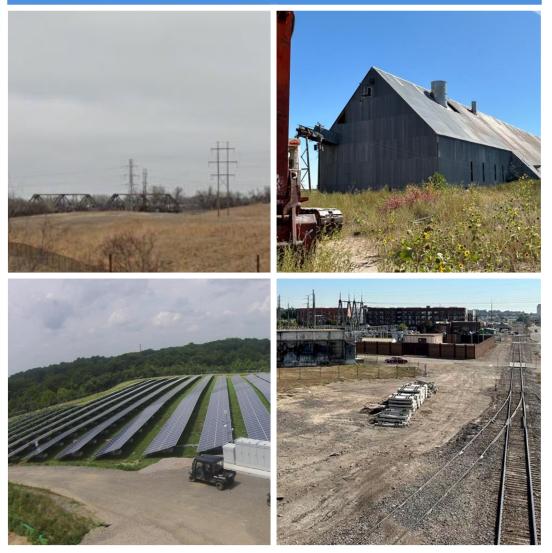
State CPCN issued only if project is deemed to be in the "public interest"

Local comprehensive plans and zoning should be informed by public input to shape longer term community growth But these processes can result in longer timelines that can jeopardize the economic and commercial viability of proposed projects

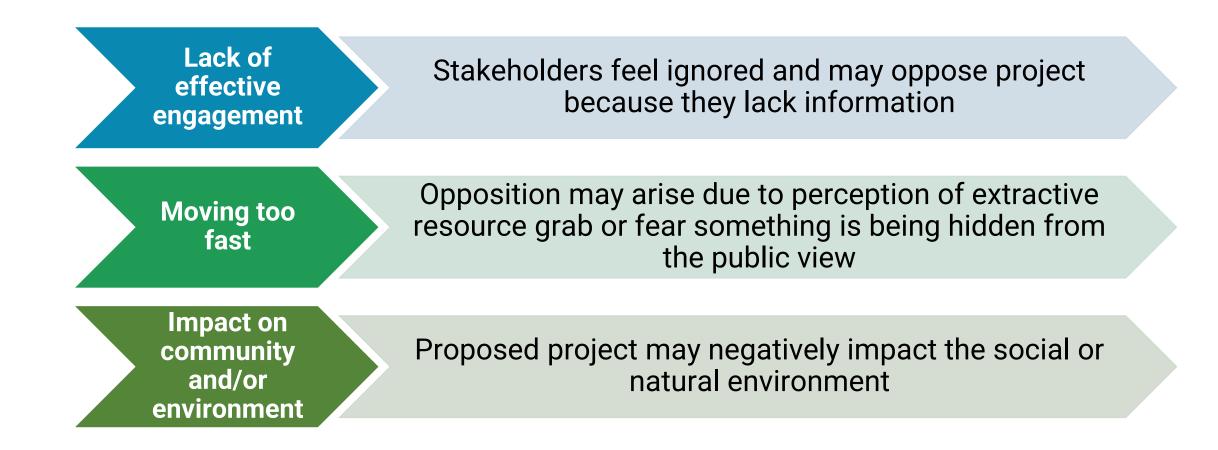
Insufficient agency capacity

Lack of agency coordination


State permitting decisions


Opposition & (fear of) litigation

Siting decisions are often influenced by multiple factors:


- 1. Local land use regulations
- 2. Economic development priorities
- 3. Environmental stewardship
- 4. Cost of land
- 5. Proximity to and availability of existing infrastructure

Select all squares with existing energy transition infrastructure If there are none, click skip

The greatest tensions in siting result when there is misalignment between community goals and developer interests

Potential solutions could improve agency processes and tackle political complexities

Early engagement

Building agency capacity (8) (8) (8)

Cross-agency coordination & streamlining

For *interstate* and *offshore* transmission projects, the US Department of Energy's Transmission Siting and Economic Development grants program may help

Purpose:

·Transmission siting authorities on siting impact analyses;

·Actions to streamline approval or permitting process; or,

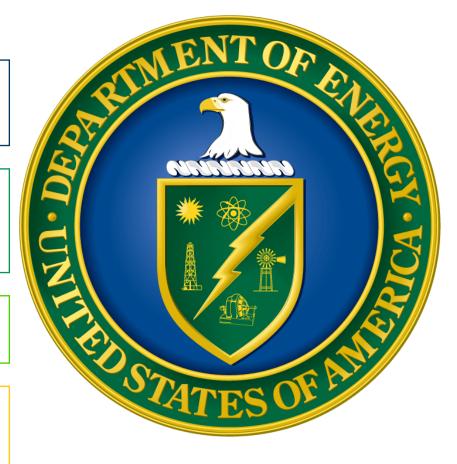
·Economic development activities for communities affected by the siting

Types of Economic Development Activities:

•EV charging, clean energy, microgrids

Community centers and green spaces

•Essential community facilities for public safety, healthcare, education, and improved transit •Workforce development and job training


Funding Available:

Up to \$10,000,000 for siting and permitting awardsUp to \$50,000,000 for economic development awards

Notes:

•Economic development funds may only be released after the approval or commencement of construction of the covered transmission project

•Economic development offices cannot qualify for this on their own –rather they would partner with state, Tribal, or local government entities who apply for economic development funds

Siting Checklist

Hill line

Strategic Land Use:

Is this the "highest and best use" of this site?

- □ How well does this align with existing site owner goals and/or community visioning?
- Are zoning, right-of-way, or land-use conditions aligned with the proposed reuse for this site?
- Can co-locating clean energy further enhance plans for the site?

Strategic Engagement:

- Are your development processes and procedures clearly communicated and easy to find?
- Have community stakeholders already weighed in on goals, visioning, land use planning, and other processes?
 - What types of pre-siting and community benefit agreements can be discussed before projects advance heavily?

□ What depth of community engagement is encouraged and supported?

Are community engagement processes designed to be inclusive?

Making community benefits tangible can help drive consensus and develop comprehensive solutions

Community Benefits Plan

- What It Is: Plan requested or required by federal agencies (potentially others too) when receiving federal funding
- Goal: Intended to advance community and labor engagement, support quality jobs and workforce development, promote diversity, equity, inclusion, and accessibility, and implement Justice 40 goals
- What It Does: Demonstrate a clear process for community and labor engagement
- **Notes:** Intentionally flexible mechanism for communities to leverage

Making community benefits tangible can help drive consensus and develop comprehensive solutions

Community Benefits Agreement

- What It Is: Contract negotiated between communities and project developers
- **Goal:** Intended to help build and sustain support for projects
- What It Does: Specify what benefits the community will receive in exchange for supporting the developer's project in their neighborhood(s)
- Notes: Benefits could include guaranteed minimums for local hiring, inclusion of affordable units in new housing, and enhancing parks or community facilities

Regardless of which of these or other paths your community takes, it is important for developers and project planners to engage proactively and clearly

Community Benefits Plan

- What It Is: Plan requested or required by federal agencies (potentially others too) when receiving federal funding
- Goal: Intended to advance community and labor engagement, support quality jobs and workforce development, promote diversity, equity, inclusion, and accessibility, and implement Justice 40 goals
- What It Does: Demonstrate a clear process for community and labor engagement
- **Notes:** Intentionally flexible mechanism for communities to leverage

Community Benefits Agreement

- What It Is: Contract negotiated between communities and project developers
- **Goal:** Intended to help build and sustain support for projects
- What It Does: Specify what benefits the community will receive in exchange for supporting the developer's project in their neighborhood(s)
- Notes: Benefits could include guaranteed minimums for local hiring, inclusion of affordable units in new housing, and enhancing parks or community facilities

Session Objectives

Why does this matter?

Explore how permitting, siting, and community engagement impact clean energy projects and clean energy manufacturing

What can we really do about it?

Understand the realities of the current processes as well as best practices to factor into project planning to best position your community and/or region for success 3

What's already been done?

Break down your roles in this process and learn from peers about how to navigate complex situations

Questions?

Beverages & Barrier - Small Group Discussion

Time Remaining

40:00

Start	Stop	Reset	mins: 40	secs:	0	type:	None	\sim

D Breaktime for PowerPoint by Flow Simulation Ltd.

Pin controls when stopped \checkmark

RMI – Energy. Transformed.

Welcome to Day 2: RMI's IRA Bootcamp for Economic Development Practitioners

RMI – Energy. Transformed.

RMI Agenda – January 17, 2023 (Day 2)

8:00 a.m.	Light Breakfast						
8:30 a.m.	Opening Remarks						
8:45 a.m.	Reinvesting in Brownfields & Energy Communities for the Clean Energy Economy						
9:50 a.m.	Public Financing, Green Banks & Greenhouse Gas Reduction Fund						
11:00 a.m.	BREAK						
11:15 a.m.	Green Hydrogen & 45V						
12:30 p.m.	LUNCH						
1:15 p.m.	Cleantech manufacturing & 48C/45X						
2:30 p.m.	Break						
2:45 p.m.	Case Study Breakouts: Leveraging the IRA						
3:45 p.m.	Workshop Wrap-Up						
4:30 pm	End of Day						

Reinvesting in Brownfields and Energy Communities for the Clean Energy Transition

Presenters: Matthew Popkin

What are you hoping to get out of this session?

- 1. I know nothing about this topic and want to learn more
- 2. I manage a redevelopment or brownfields program and want to know what's possible for my community
- 3. I/my community is starting to explore this type of project and I want to vet whether this is a good idea
- 4. I'm an expert in this topic and intend to heavily critique this presentation
- 5. This seemed like the best way digest breakfast

These critical definitions will help us start today off on the same page

Brownfields

- A property where the expansion, redevelopment, or reuse may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant
- Examples include former industrial sites, inactive landfills/dumps, old factories, abandoned mines, and closed power plants

Energy Communities

- Designated communities across the country hard-hit by coal mine and coal power plant closures, which should be prioritized for focused federal investment
- Includes communities with a significant proportion of coal, oil, natural gas, and power plant workers who drove the industrial revolution and the economic growth that followed and have been essential to the growth of the United States

Environmental Justice

The fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation and enforcement of environmental laws, regulations and policies

This Session's Objectives

What?

Establish baseline knowledge about brightfields and energy communities Understand the potential opportunity that exists

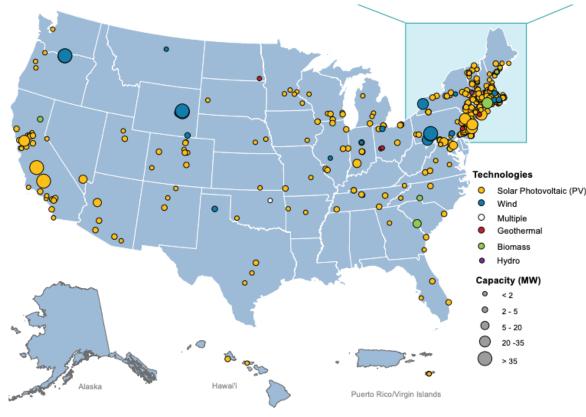
Why?

How?

Outline how your community can start to move forward and key incentives that exist

"Brightfields" repurpose previously disturbed, often-contaminated land with renewables to support a more local and equitable energy transition

Brownfield:


- A property where the expansion, redevelopment, or reuse may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant
- Common brownfields include former industrial sites, inactive landfills/dumps, old factories, abandoned mines, and closed power plants

Brightfield:

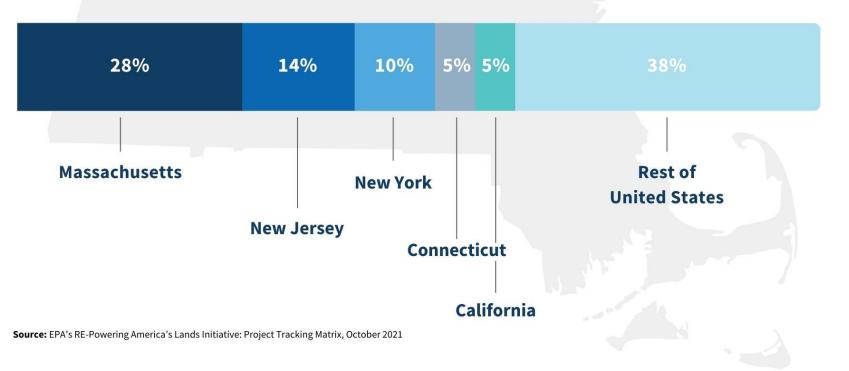
• A type of redevelopment where clean energy is built on a former brownfield or Superfund site.

Brightfields offer a large (yet largely untapped) potential market – especially with new federal incentives

Brightfields Deployed Across US by Technology

Source: US EPA Re-Powering America's Land Tracking Matrix 2023

190,000+ potential brownfield sites for clean energy deployment on <u>US EPA's</u> <u>RE-Powering Mapper</u>
 4,300+ closed/inactive landfills across America could host up to ~63 GW of solar (<u>RMI</u>)
 Only 530 completed brightfields projects totaling ~2.5 GW through October 2023 (<u>US EPA</u>)


Just 1% of potential brightfields sites could support ~6 GW of clean energy and 60,000+ jobs.

Brightfields come in all shapes and sizes

Brightfields are growing across the country, yet 62% of the progress has been in just 5 states

Geographic Concentration of Installed Brightfield Projects

While a few states initially led the brightfields push, these types of projects are becoming part of the clean energy transition across America

Pittsburgh, PA 2 MW of solar installed on old steel mill in Hazelwood Green Weirton, WV • 30 MW of solar planned for \sim 200 acres of Brown's Island Martin County, KY • 200 MW of solar planned on shuttered Martiki mine land Franklin County, OH • 50 MW of solar planned on closed landfill Houston, TX • 52 MW of solar and community solar planned on 240-acre closed urban landfill Project is spurring federal, local, and private investments in solar and STEM workforce training for 175+ residents

RMI – Energy. Transformed.

Communities can leverage brightfields to deliver wide ranging local benefits

Sustainable land reuse

Using existing infrastructure

Environmental justice

Generate local revenue from innovative reuse

Hedge against rising utility bill

Don't underestimate the media and public relations value of supporting a narrative of community revitalization

pv magazine

Former Houston landfill set to become the country's largest urban solar project

The 50 MW Sunnyside solar project is set to be constructed on 240 acres of former landfill land just outside of downtown Houston.

JANUARY 21, 2021 TIM SYLVIA

COLUMBUS BUSINESS FIRST

Franklin County's former landfill will soon become a giant solar farm

The wasted potential of garbage dumps

Toxic landfills are emblems of environmental injustice across the US. Clean energy can remake them.

Closed landfills are particularly promising sites for hosting solar energy

Conducive Site Conditions Landfills typically have good sun exposure and other characteristics that support solar energy installation

Limited Reuse Cla Options Usi

Closed landfills have few, if any, competing redevelopment options, and using landfills avoids land-use conflict with other revitalization priorities

Environmental Justice

Landfill solar offers a sustainable, non-hazardous reuse of sites that were often prior areas of environmental injustice

Landfill solar can breath new life and bring new revenue from property taxes and land leases from an otherwise inactive site

Houston's "flagship" landfill solar project highlights the potential that brightfields have as catalysts for change

Project Impact:

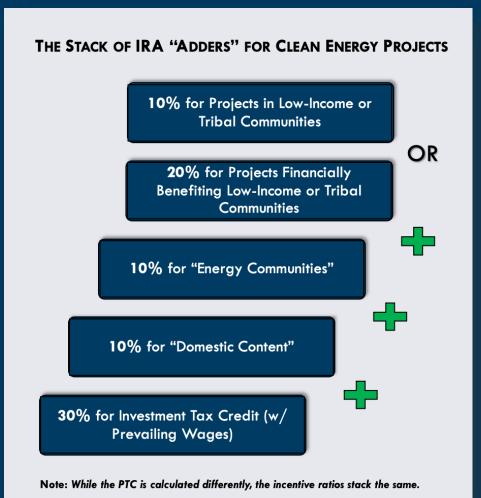
- 52 MW on 240 acre-closed landfill, including 2 MW of community solar (\$100M+)
- World's largest landfill solar farm planned and permitted for lowincome and historically marginalized black neighborhood
- Project is spurring federal, local, and private investments in solar and STEM workforce training for 175+ Houston residents

Pulse Check: How are you feeling after learning the basics of brightfields?

- 1. Excited by this potential opportunity
- 2. Intrigued but need to learn more
- 3. Unsure/Skeptical
- 4. Not interested/Not a fit for my community
- 5. Still digesting breakfast

Recently created and enhanced incentives in the IRA will increase the financial opportunity for brightfields nationally

With What:


• U.S.-sourced materials (domestic content)

Where:

- Solar installed in Energy Communities, Tribal communities, and/or low-income communities
- "Energy Communities" include brownfields, coal communities, and other communities that have relied economically on fossil fuels

Who Benefits:

• Projects that financially benefit Tribal communities or lowincome communities

I want to...

Incorporate clean energy as a reuse into my brownfields grants

Understand how I can leverage closed landfills or brownfields in my community to generate clean energy locally

Help my community repurpose aging power plant infrastructure with new, cost-effective clean energy

Reduce what my local government, businesses, or residents may have to pay in utility bills

Plan for a productive future of my brownfield that doesn't have a near-term option for economic development or conflict with other redevelopment plans

But developing these types of projects is rarely a linear journey. While guidance and lessons learned can help, there is NO cookie cutter approach that can serve every project or every community.

Brightfields Site Selection Checklist

Strategic Reuse:

□ Is this a productive reuse of the site?

Does this reactivate a site without current plans?Does this risk impeding future reuses nearby?

□ Is this the "highest and best use" of this site?

- How well does this align with existing site owner goals and/or community visioning?
- Are zoning, right-of-way, or land-use conditions aligned with the proposed reuse for this site?
- Can co-locating clean energy further enhance plans for the site?

Technical Reuse:

- Does the site seem like it can reasonably support clean energy?
 - What clean energy technologies (i.e., solar, wind, geothermal, or energy storage) could make sense?
 - Are there serious concerns about shading (for solar), wetlands, or floodplains?
 - □ Is there infrastructure on-site or nearby that may complement clean energy reuse?

□ Is there a reasonable pathway for how the electricity generated would be consumed?

Is there on-site or nearby demand for electricity?
Would the electricity support the utility's grid?

EPA's Technical Assistance to Brownfields program can help communities address brownfields challenges

TAB Guidance & Services:

- Inclusive community visioning
- Acquiring, assessing, cleaning up and redeveloping brownfield properties;
- Health impacts of brownfield sites
- How to comply with voluntary cleanup requirements
- Funding and financing strategies, including EPA brownfields grant application support
- And more...

Source: US EPA

RMI is partnering with regional **Technical Assistance** to Brownfields programs to help communities across America advance brightfields projects from idea to implementation.

To educate communities and site owners about brownfields reuse options that include clean energy

To provide pre-development site evaluation and analysis to communities considering "brightfields"

To provide other technical assistance and tools to help with reuse planning, funding, financing, and clean energy procurement

Opportunities for Energy Communities

Investing in "Energy Communities" is a critical part of not leaving anyone behind in the energy transition

Initial Report to the President on Empowering Workers Through Revitalizing Energy Communities

Interagency Working Group on Coal and Power Plant Communities and Economic Revitalization

APRIL 2021

The Situation:

• United States coal mining employment fell from more than 175,000 in 1985 to roughly 40,000 in 2020

Federal Priorities:

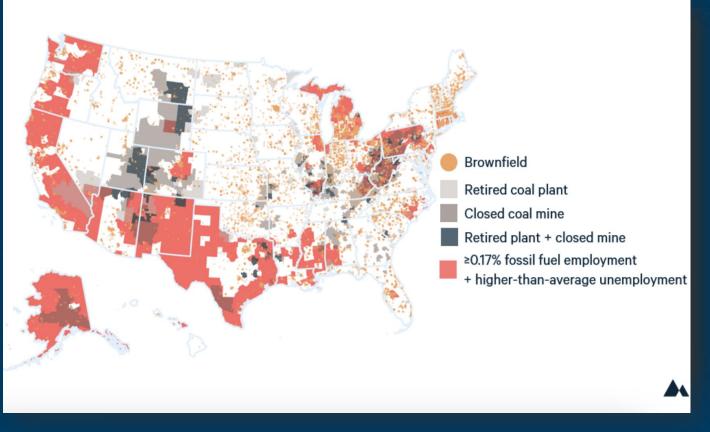
 Interagency Working Group is focusing initial federal investments in areas with high concentrations of coal-dependent jobs

Goal:

• Ensure energy communities have both the foundational infrastructure and targeted place-based investments to transition to more sustainable, resilient, and equitable economies

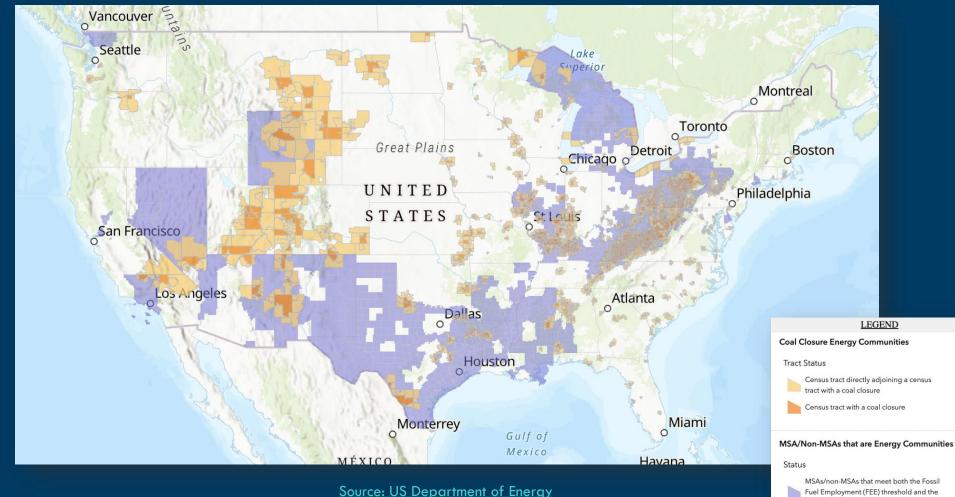
So... what are "Energy Communities" exactly?

Brownfields


 Sites designated as "brownfields" that contribute to longer term community development legacies

Coal Communities

 Census tracts where a coal-fired power plant has closed since 2010 or a coal mine has closed since 2000, plus directly adjacent census tracts


Areas of Higher Fossil Fuel Economies

• Areas where direct employment or local tax revenues are substantially related to fossil fuels **and** where unemployment is at or above the national average in the previous year

Data Source: US EPA; Chart Source: Resources.org

The Energy Communities Bonus Tax Credit offers a 10% adder to reuse these sites and areas for energy investments

unemployment rate requirement

RMI – Energy. Transformed.

The Energy Infrastructure Reinvestment (EIR) program offers \$250 billion in low-cost financing to reinvest in energy communities

Energy Infrastructure:

- A facility, and associated equipment, used for:
- The generation or transmission of electricity; OR
- The production, processing, and delivery of fossil fuels, fuels derived from petroleum, or petrochemical feedstocks

Qualifying Reuses:

- Retool, repower, repurpose, or replace legacy energy infrastructure
- Enable operating energy infrastructure to avoid, reduce, utilize or sequester air pollutants or GHGs

Program Requirements to Benefit Energy Communities:

- Customer Benefits: For utilities, financial benefits go to customers
- Community Benefits Plan

These two examples illustrate what the range of projects that are possible

Replacing a fossil fuel power plant with solar and storage

Replacing a power plant with energy-related industrial facility

RMI – Energy. Transformed.

The multi-step process for transforming a coal plant captures new incentives and drives drive long-term economic development

Incentives for brightfields, power plant conversions, and new energy technology manufacturing can shape economic development planning

Programs like:

- Clean Energy Tax Credits
- Energy Infrastructure Reinvestment (EIR) program
- Battery Manufacturing Tax Credits
- Empowering Rural America (New ERA) program
- Brownfields Multipurpose, Assessment, Cleanup, and Revolving Loan Fund Grants
- Economic Adjustment Assistance program

Inform how communities plan for:

- Site remediation and reuse
- Construct new manufacturing facilities that support a clean energy economy
- Support worker retraining
- Reactivate communities previously left behind in the energy transition
- Reinvest in clean energy while paying off coal debt, ramping down coal generation, and saving customers money
- Make use of grants and financing to retire coal plants and own clean energy

By understanding what is possible, communities, planners, development officials, and site owners can plan to repurpose their brownfields, closed power plants, and other sites with clean energy and new manufacturing - and how this can be a part of broader economic revitalization strategy.

This Session's Objectives

What?

Establish baseline knowledge about brightfields and energy communities Understand the potential opportunity that exists

Why?

How?

Outline how your community can start to move forward and key incentives that exist

How Weirton, WV is becoming a clean energy economy hub

Brownfields represented both a challenge and opportunity for Weirton, with abandoned industrial buildings dominating the riverfront community and former steel town

Challenges:

• Over 1,550 acres of underutilized, former manufacturing sites with decades of industrial contamination from the downtown to the riverfront

Opportunities:

- Weirton needed to transform its sites and perception, so it focused on site assessments, cleanup, infrastructure upgrades, and reuse planning to revitalize brownfields
- Leveraged local, federal, and private investments, including ~\$4.2M in federal funding and \$80M+ of private investment over 5+ years, helped solidify a reuse vision and reactivate its economy

Solar on a hard-to-access brownfield complements other reinvestment priorities and demonstrates innovation

Key Benefits

- ✓ Offering a productive reuse for the hard-to-redevelop Brown's Island
- Leveraging existing infrastructure onsite (e.g. roads, electrical)
- ✓ Generating local revenue in Weirton with solar
- Building momentum for reinvestment to reactivate the region

Planning for the clean energy economy takes significant time, strategy, effort, and resources

A decade of preparation

• Multiple plans, market engagement partnership building, and political buy-in laid groundwork for multiple multimillion dollar federal and private investments

Weirton embraced its legacy

 O "It became abundantly clear that Weirton... a historic steel community that [has]... raw infrastructure and know-how to make great things out of iron, would be the ideal location for our first commercial battery production facility" – Form Energy

Funding followed the vision

• The existence of funding and financing didn't drive Weirton's future – the key was figuring out what future made sense for the site and community

Questions?

Public Financing, Green Banks, and the Greenhouse Gas Reduction Fund (GRE)

Alisa Petersen, Lachlan Carey, Whitney Mann

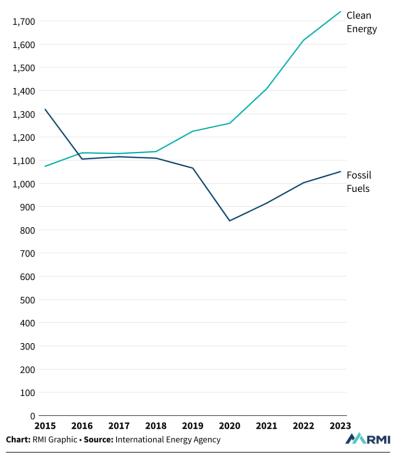
Session spark notes & takeaways

Key takeaways:

- CDFIs & Green Banks promote financial activity enabling more green investments in underserved markets
- **GGRF supercharges and reinforces these actors** to do more faster providing **flexible capital** to overcome investment barriers

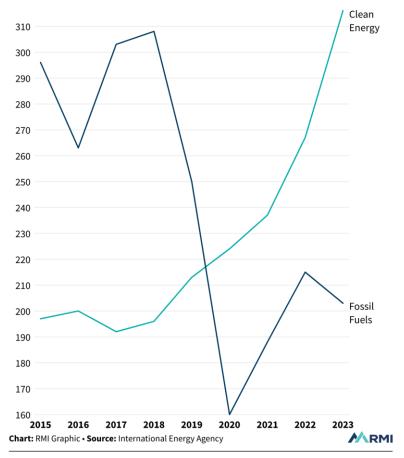
Spark notes:

- Public and private financing both needed to meet US climate and economic development goals
- CDFIs and Green Banks key to crowding in private capital for those goals
- Greenhouse Gas Reduction Fund (GGRF) bolsters CDFIs and Green Banks

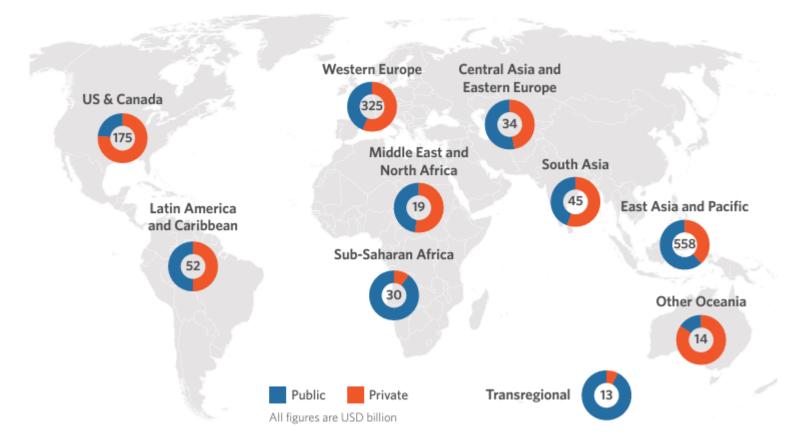

Group discussion:

- What have current / previous CDFI and/or Green Bank engagements looked like?
- What could new types of engagement look like?

Clean energy investment in the US is quickly outpacing fossil fuels

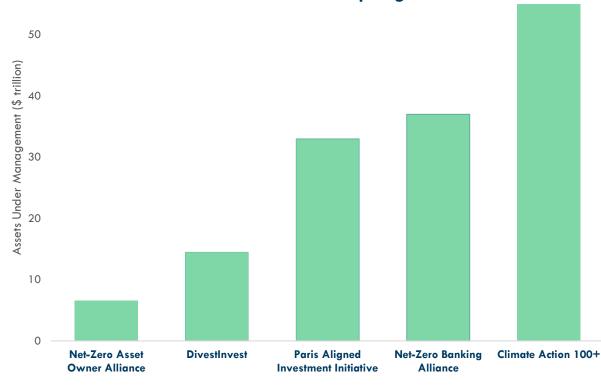

Global clean energy investment is now 65% greater than fossil fuel investment

Billions of US dollars


Clean energy investment has exceeded fossil fuels in North America since 2020

Billions of US dollars

Climate investment in the U.S is driven by the private sector more than other regions

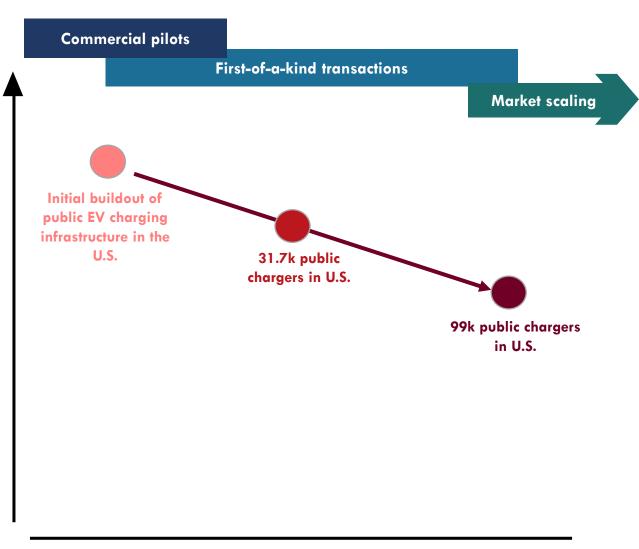

Figure ES5: Public vs. private climate finance by region

There is plenty of private capital and ambition to tap for climate solutions, but mobilizing that capital where and when it is needed most is complicated

Source: RMI (2021)

60 Hundreds of investors, with trillions under management have committed to one climate pledge or another

- Financial markets are increasingly committed to climate action
 - However, **investors lack investment opportunities** that meet capital allocation drivers
 - Different types of investors **face different constraints** and **seek different investment opportunities** to translate commitments into investments
 - The risk is **overestimating the amount of private capital available** today for climate investment by **neglecting the mismatch** between investment opportunities and capital allocation drivers of various investor types
 - Different investor types can be mobilized for different financing needs by **designing effective public and concessional investment**


Low-carbon solutions present different investment opportunities

Illustrative evolution of EV charger commercialization progress

In general, low-carbon solutions present different investment opportunities (e.g., risk / return, deal size, loan tenor or investment horizon) as they mature

Risk/Return

Flexible public financing can match investments to private capital allocation drivers

Illustrative evolution of EV charger commercialization progress

In general, low-carbon solutions present different investment opportunities (e.g., risk / return, deal size, loan tenor or investment horizon) as they mature

Risk/Return

2

Flexible, concessional financing can help technologies scale by tailoring solutions to overcome private market bottlenecks

First-of-a-kind transactions	
	Market scaling
From 2009-2013, \$15 million Reco mobilized venture capital funding in America to buildout public EV charge	n ChargePoint
Corporate equity	
Private equity	
Junior / Mezz debt	
 charger companies went public via V chargers have been unable to tap institutional and project finance. help unlock these capital sources. 	Corp. equity Institutional investors
	From 2009-2013, \$15 million Reco mobilized venture capital funding in America to buildout public EV charge Corporate equity Private equity Junior / Mezz debt . charger companies went public via V chargers have been unable to tap institutional and project finance. help unlock these capital sources.

Flexible solutions are especially important across market segments

Illustrative gap in 2020 EV charger investors across market segments

In general, low-carbon solutions present different investment opportunities (e.g., risk / return, deal size, loan tenor or investment horizon) as they mature

Risk/Return

Flexible, concessional financing can help technologies scale by tailoring solutions to overcome private market bottlenecks

Low-carbon transformations happen at different paces across market segments, reinforcing the need for flexible financing solutions so no markets are left behind

Public investment for expanded deployment of EV charger infrastructure

investment opportunity:

- Scale charger deployment to support growing, but unproven demand
- Demonstrate revenue streams to mobilize participation of more investor types and capital sources ("market transformation")
- Objective is tapping institutional and project finance, where longterm guaranteed offtake can be leveraged into upfront capital.
- Focus on historically disadvantaged & low-income communities where private capital assigns prohibitively high premiums.

unmet private capital allocation drivers:

Lack of debt financing at scale due to:

- 1) revenue uncertainty
- Demand /market risk from unknown charger use
- Uncertain technology performance over asset life
- Long (approx. 10-yr) payback period for investments
- 2) high costs
- Insufficient assets to bundle into financeable portfolios for mature investors
- Fragmented and heterogeneous deals with diverse stakeholders
 & permitting needs

public investment objectives & sample levers:

1.Mitigate demand & operating downside risk

Credit enhancementsFirst-loss equity

2. Address high cost of capital and long payback periods

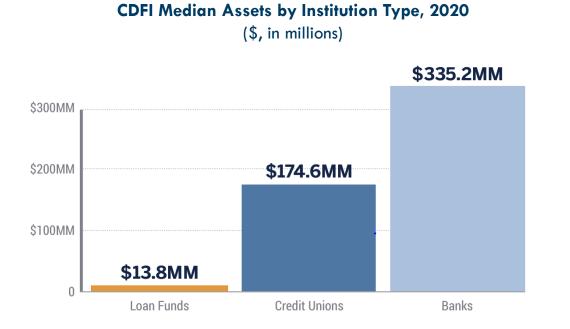
• Low-cost loans & loan guarantees

- 3. Scale market coverage
- Loan grace period Forgivable debt financing

4. Address transaction costs

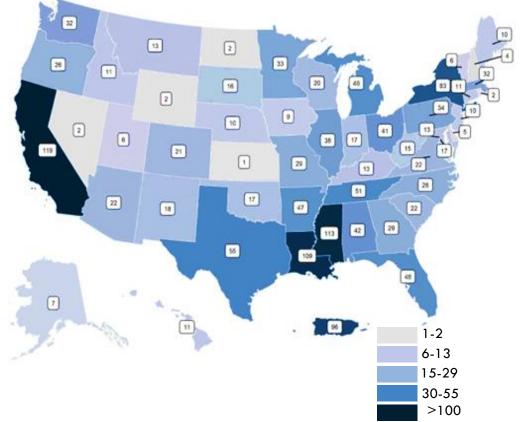
- Warehousing and aggregation
 Technical assistance
- Technical assistance grants

To date, green banks play a big role mobilizing private dollars for climate



Existing and Developing Green Banks Across the U.S.

RMI – Energy. Transformed.


Source: Green Banks in the United States: 2022 U.S. Green Bank Industry Annual Report, American Green Bank Consortium

Community Development Finance Institutions (CDFSs) also leverage private dollars 8:1, unlocking finance for underserved communities

Source: Source: Sizing the CDFI Market: Understanding Industry Growth, Federal Reserve Bank of New York

Number of CDFIs Across the U.S.

Source: Sizing the CDFI Market: Understanding Industry Growth, Federal Reserve Bank of New York

PROJECT SPOTLIGHT

HiON Public Electric Vehicle Universal Fast Charging

Idaho Springs | Greenwood Village | Denver

Project Investment: \$1,483,595

The HiON EV projects were a set of three EV charging infrastructure projects across Idaho Springs, Greenwood Village, and Denver. These represented CCEF's first entry into supporting transportation electrification. HiON will be installing a total of 12 Level 3 (direct current or DC Fast Chargers), dual-port electric vehicle charging stations across the three sites. The stations will provide public and universal access for electric vehicle drivers across three high-traffic areas in Colorado.

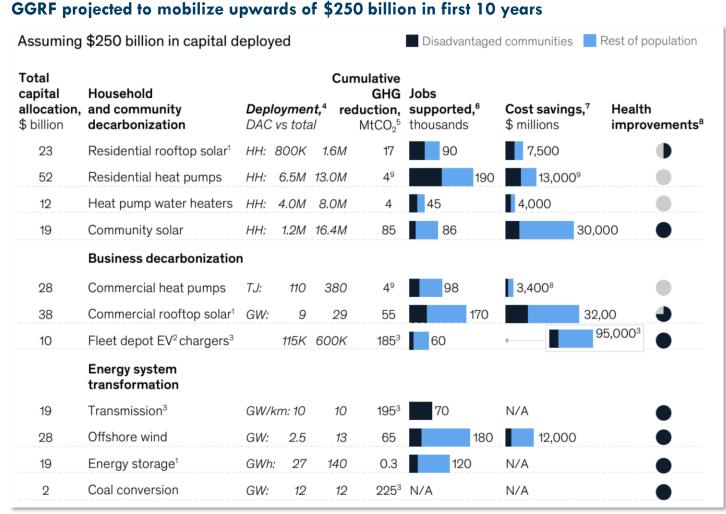
The Colorado Energy Office, KeyBank, and Xcel Energy all collaborated with CCEF to provide a mix of direct funding, grants, and rebates to the HiON Group to get the three sites developed and installed.

7,927 lbs. Carbon Monoxide (CO) avoided

5 lbs. Nitrogen Oxides (NOx) avoided

92 lbs. Fine Particulate Matter (PM 2.5) avoided

259 MT CO2e GHG Emissions Avoided



Green Bank Case Study: Colorado Clean Energy Fund

- Commercial Product Offering Highlights
 - Bridge Loan
 - Up to \$500k, up to 36 month term, below market rate, flexible repayment, funding access within 30 days of application submission
 - Clean Conversion Loan
 - Up to \$1M, up to 15 year term, below market rates, senior or subordinate lien interest in subject property
 - Energy Project Accelerator Loan
 - Up to \$500k, 2-10 year term, below market rates, access to funding within 1 week of application submission
 - Energy Service Agreement (ESA) Off-Balance Sheet
 - Projects of \$500K and up, no interest rate payment based on ESA, no security required, funding access within 2-3 weeks of application submission

Greenhouse Gas Reduction Fund bolsters CDFIs & green banks to mobilize finance for clean energy in underserved communities

- Greenhouse Gas Reduction Fund's (GGRF) provides \$27 billion in flexible, concessional financing
- This capital aims to fill market gaps, funding where private markets will not, and accelerating investment in deployment of net-zero buildings, transportation, and energy

Source: Delivering Transformative Impact from US Green Bank Financing, McKinsey

By filling market gaps & crowding in private dollars, GGRF delivers economic development outcomes from clean energy

Accelerate bankability of clean energy projects

Attract private capital to previously overlooked markets

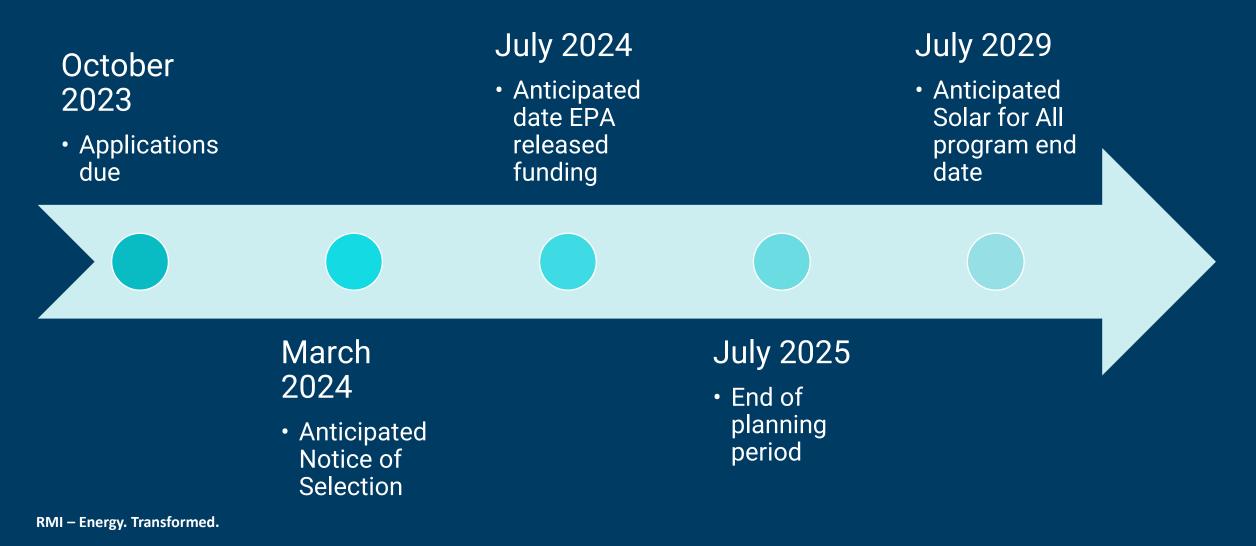
Build wealth through new approaches to clean energy financing

Foster green jobs to capture green development benefit GGRF is the single largest investment in low-income and disadvantaged communities in the Inflation Reduction Act

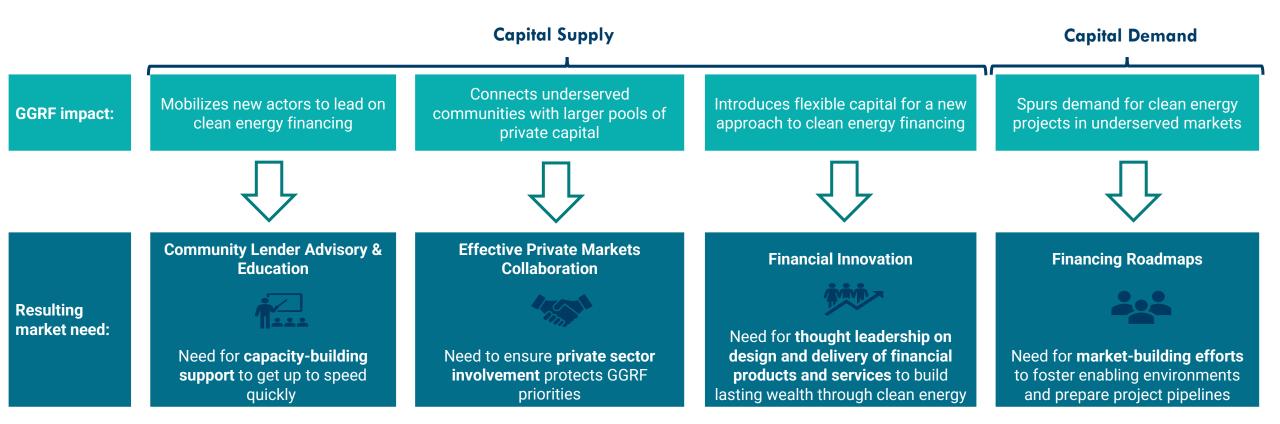
Solar for All \$7B Solar Fund

EPA will grant:	Funding will serve:	Funding Uses	Possible Financial Support	Project Examples
 Up to 60 states, Tribal and municipal governments, and eligible non-profit entities 	 100% low income and disadvantaged communities 	 Expand existing or create new low- income solar programs Fund new workforce training programs Technical assistance for project deployment Address regulatory barriers to solar 	 Subsidies, rebates, and other incentives Debt (including loans, forgivable loans, etc.) 	 Residential serving community solar Rooftop solar paired with heat pump and EE

Clean Communities Investment Accelerator (CCIA) \$6B Community-Focused Fund


EPA will grant:	Funding will serve:	Funding Uses	Possible Financial Products	Project Examples
• 2-7 hub non- profits	 100% low income and disadvantaged communities 	 Provide funding and technical assistance to a national network of community lenders to finance clean energy projects that reduce energy costs and create jobs 	 Grantees pass- through 80-90% of awards to community lenders as subsidies or subgrants 	Same as NCIF

National Clean Investment Fund (NCIF)


\$14B Fund for Direct Investment in Qualified Projects

EPA will grant:	Funding will serve:	Funding Uses	Possible Financial Products:	Project Examples
 2-3 national nonprofit hubs to create national clean financing institutions 	 At least 40% low income and disadvantaged communities 	 Direct investment in qualified projects (financial assistance) Predevelopment & market-building activities 	 Debt Equity Hybrids Credit enhancements 	 Rooftop solar, solar-plus-storage, fuel cells Building retrofits and electrification New construction of net-zero buildings EV charging infrastructure Transit-oriented development

GGRF funding should be live by July 2024, but offerings may still be in flux for some time

Looking Ahead: Opportunity is much larger than GGRF

RMI's Four Key Workstreams for GGRF:

Capital Supply & Demand

Community lender advisory and education

Set Market Ambition for Community Lenders as Climate Finance Leaders

Build Expertise through Tailored Advisory and Technical Capacity-Building Resources

Refine, Integrate, and Disseminate Learnings Over Time

Effective private markets collaboration

Convene Stakeholders to Align around Shared Priorities

Refine, Integrate, and Disseminate Learnings Over Time

Capital Supply

Financial innovations to build wealth through clean energy

Cultivate Understanding and Demand of New, Scalable Models

Refine, Integrate, and Disseminate Learnings Over Time

Community financing roadmaps

Identify Local Opportunities and Needs

Refine, Integrate, and Disseminate Learnings Over Time

Capital Demand

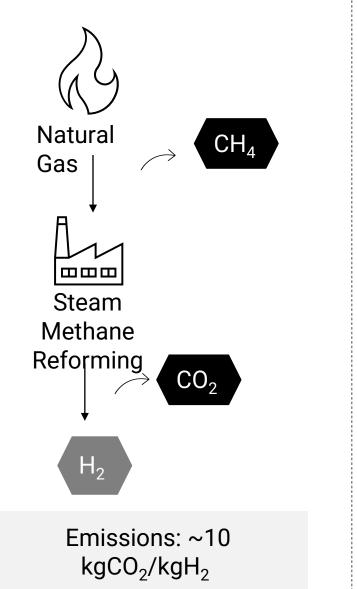
How should EDO's be engaging green financers?

• Group discussion:

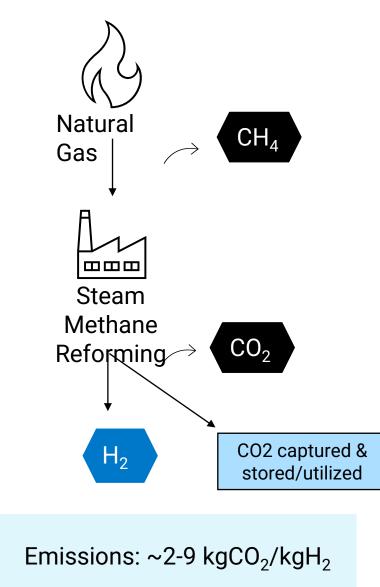
- Raise your hand if you're engaging with CDFIs and/or Green Banks?
- Have any of you been involved in any of the GGRF applications?
- What could new types of engagement look like to better capitalize on GGRF?

Green Hydrogen

10 ATT 10


Presenters: Nathan Iyer and Taylor Krause

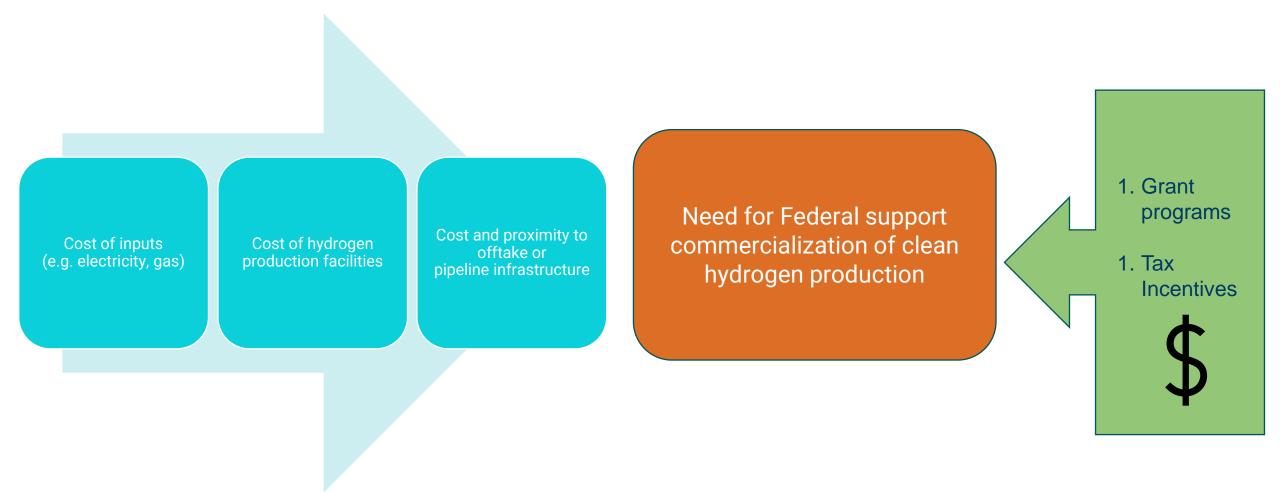
Introduction to hydrogen



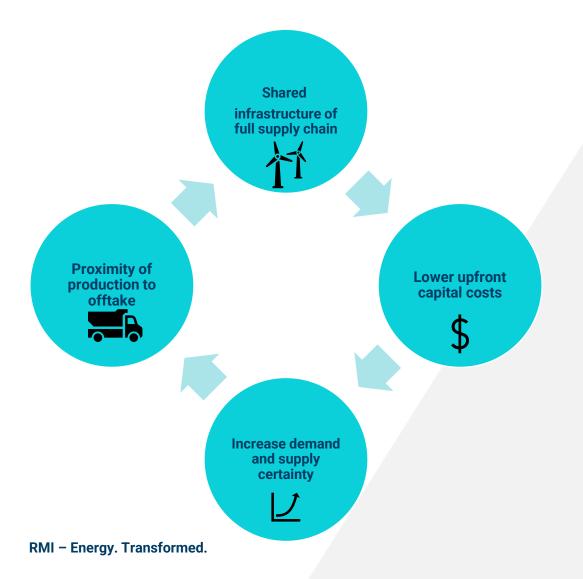
- **Hydrogen:** A versatile clean fuel that can be used in a wide range of heavy industry practices like heavyduty transport, oil refinement, iron & steel-making, and chemical manufacturing
- Today's Hydrogen: Mostly used in making fertilizer and refining petroleum
- Future of Hydrogen: Shipping, aviation fuel, heavytrucking

Grey Hydrogen Pathway

Blue Hydrogen Pathway



Green Hydrogen Pathway Electrolyzer 0_{2} H_2


Emissions: 0 kgCO₂/kgH₂

Today's approximate values shown, emissions dependent on efficiency of capture, upstream emissions, electricity sourcing. Capture rate used: 56-95%. Based on RMI analysis, the best blue (95% capture, 0.05% leakage) case still results in ~1.7kgCO2/kgH2 based on a typical grid emissions.

Clean Hydrogen Production is Expensive!

What is a hub?

\$7 Billion For America's First Clean Hydrogen Hubs, Driving Clean Manufacturing and Delivering New Economic Opportunities Nationwide

OCTOBER 13, 2023

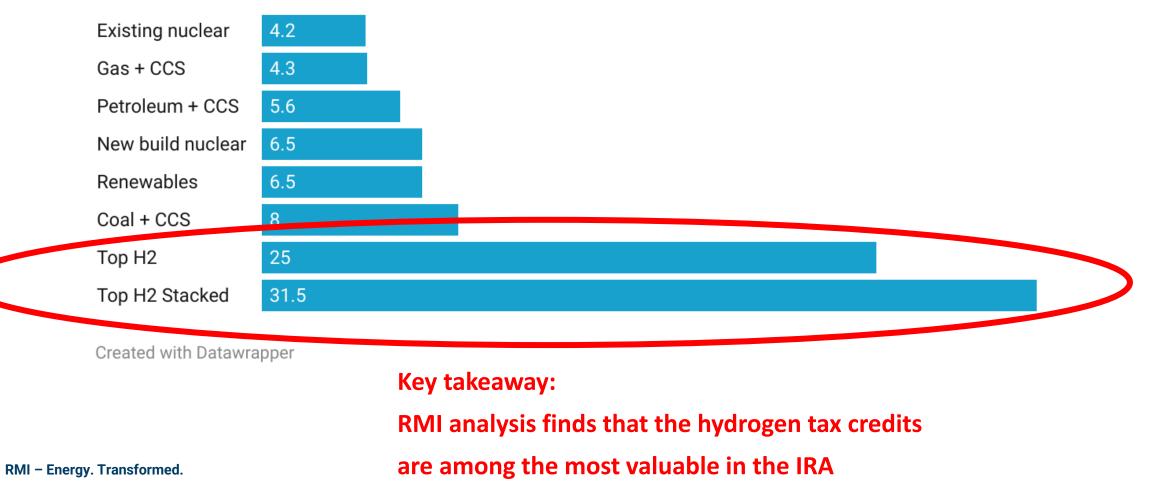
7 Hydrogen Hub Project Awardees

- 1. Appalachian Hydrogen Hub
- 2. California Hydrogen Hub
- 3. Gulf Coast Hydrogen Hub
- 4. Heartland Hydrogen Hub
- 5. Mid-Atlantic Hydrogen Hub
- 6. Midwest Hydrogen Hub
- 7. Pacific Northwest Hydrogen Hub

Clean Hydrogen provisions in the US's IRA - Eligibility and Details

Hydrogen Producers: Requires prevailing wage and apprenticeship requirements to be met to achieve full multiplier

Clean Hydrogen Credit


This would require 90%+ capture and very low upstream leakage.	Emissions intensity (kg CO ₂ /kg H ₂)	Credit value (\$/kg H₂)	5x multiplier for meeting wage req. (\$/kg H ₂)
	4.0-2.5 (60-75%)	0.12	0.60
	2.5-1.5 (75-85%)	0.15	0.75
Electrolysis (w/ EACs) is the primary pathway for the top tier	1.5-0.45 (85-95%)	0.20	1.00
	0.45-0.0 (95-100%)	0.60	3.00

Stackable Clean Electricity Credits add ~\$1.50/kg of subsidy

*Direct pay option for 5yrs for eligible projects

Hydrogen Production Tax Credit is a major driver in the IRA

IRA Credit Comparison (\$/GJ)

Three major pathways to achieve the top credit

Emissions intensity (kg CO ₂ /kg H ₂)	Credit value (\$/kg H ₂)	5x multiplier for meeting wage req. (\$/kg H ₂)
4.0-2.5	0.12	0.60
2.5-1.5	0.15	0.75
1.5-0.45	0.20	1.00
0.45-0.0	0.60	3.00

Behind-the-meter electrolysis

Connect directly to new clean power

Grid-connected electrolysis

- Develop a system that eliminates the GHG impact of hydrogen production on the grid
- This could require new clean power, transmission, and the ability to match hydrogen production with clean energy

Renewable methane

 Requires biogenic sources of methane with low leakage

Hydrogen requires a large amount of electricity – states that can unlock and deliver clean power will accelerate federal and private investments.

The difference between emissions pathways

Comparison of domestic hydrogen production pathways

Production method	Carbon intensity, kg CO2e/kg H2	% 2022 US production
Reformation (SMR or ATR) without CCS		~95%
Reformation (SMR or ATR) with >90% CCS		<5%
Electrolysis (from renewables and nuclear)		<1%
Electrolysis (from grid electricity)		<1%
Pyrolysis	6 8 10	

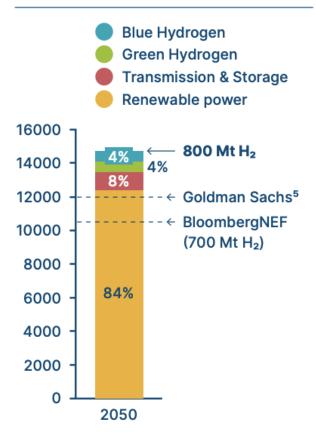
Figure 18: Well-to-gate carbon intensity of hydrogen from SMR with CCS and electrolysis pathways relative to current U.S. production, and emissions intensities that can access the clean hydrogen production tax credit. (Reproduced from Pathways to Commercial Liftoff: Clean Hydrogen.³ Assumptions regarding modeled technologies are described further in Liftoff report and include modeled assumptions; real-world lifecycle emissions may vary beyond the ranges shown here.)

Recent guidance includes pathways to demonstrate electricity is clean

Incrementality: Built within 3 years, additional exceptions being considered

Deliverability: In the same deliverability region

Hourly matching: starting in 2028, match on an hourly basis

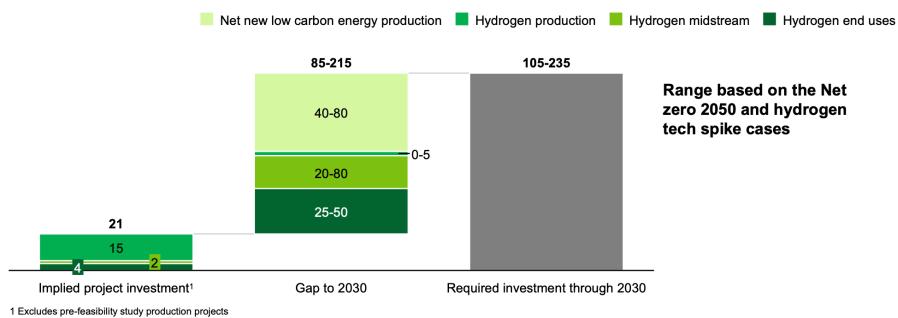


Deliverability regions (DOE)

Anatomy of an electrolysis project

Relative cost contributors \$ billion

Projects have four major components:

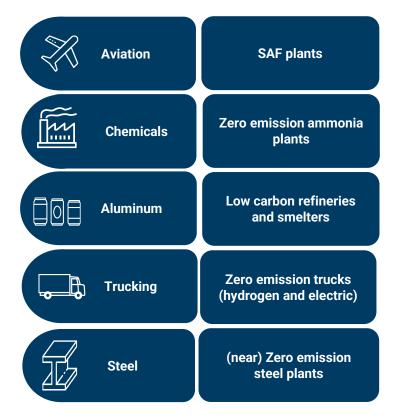

- Electrolyzer and hydrogen balance of plant
- Transmission and storage (see: 48)
- New low carbon power (see: 45Y)
- End-uses (see: industrial retrofit grants, 48C)

The relative magnitude of costs will change over time:

- When the technology is new, green hydrogen production plants will make up around 20-40% of the total project costs
- As the technology matures, the vast majority (84%) of investment will be upstream power generation

Primary gaps are in low carbon energy production, midstream, and end-uses

Investments into hydrogen value chain, \$ B



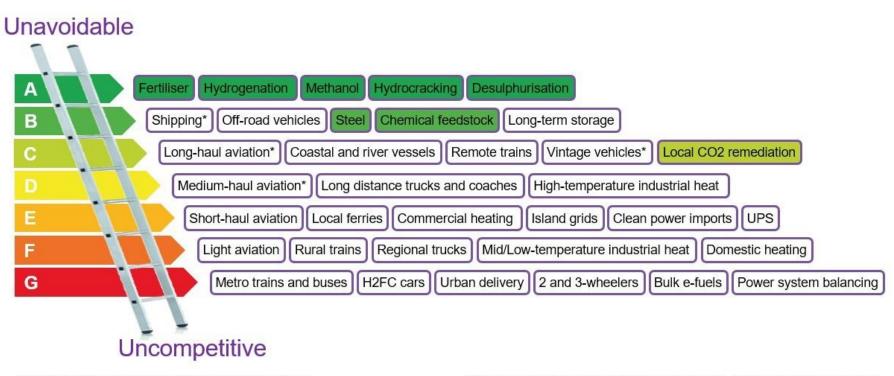
Source: Hydrogen Council, McKinsey Hydrogen Investment Model

Figure 16: Announced hydrogen production investments are on track to meet 2030 requirements if projects pass final investment decision. However, an \$85–215B capital gap exists across midstream (distribution, storage) and end-use infrastructure, low carbon energy production.

Hydrogen in the Midwest

The Midwest is well-poised for hydrogen buildout

According to EPA facility-level data, Midwestern states contain:


- Oil refineries
- Heavy trucking
- Integrated steel facilities
- Ethanol
- Ammonia fertilizer

The are three major regional opportunities:

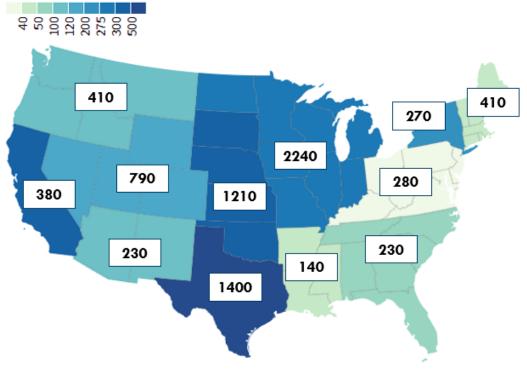
- **Clean fuels**: use hydrogen as a feedstock for aviation/trans fuels
- **Decarbonize existing facilities and build new ones:** replace high emissions hydrogen production and natural gas (e.g. steel/ammonia)
- **Expansion of nearby hydrogen hubs** (e.g. Midwest and Heartland) use common carrier clean hydrogen infrastructure to connect end-uses to hydrogen production

Hydrogen can be used for many sectors, but only a few are economically competitive

Clean Hydrogen Ladder: Chemicals & processes Associates

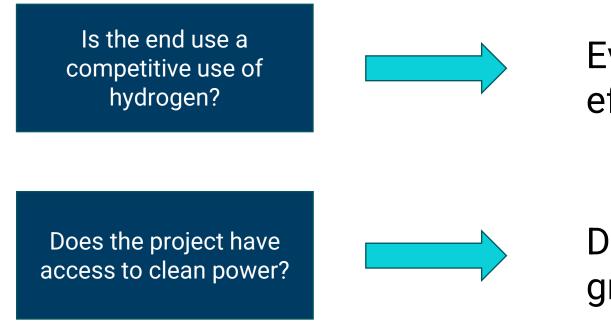
* Via ammonia or e-fuel rather than H2 gas or liquid

Source: Liebreich Associates (concept credit: Adrian Hiel/Energy Cities)


Midwest and 45V

- To receive the top credit, producers will need to procure attributes from new clean power, in the same region, and on an hourly basis
- The Midwest is the most competitive region, with enough attributes for over 2 MMT of hydrogen production (20% of current US production) by 2030
- The regions that are the most competitive will have a balanced mix of new clean power resources

Hydrogen supported by attributes distributed across regions (kT/yr) by 2030


Three pillar compliant production based on NREL REED IRA-mid case projections

kT/yr per state

Identifying competitive projects from hydrogen hype

The size of the credit will attract a lot of investment, but not all project concepts are viable.

Evaluate all options, weigh efficiency losses

Diverse power sources, growing grid, and rapid interconnection

Why should you care?

- To receive the top credit, producers will need to procure attributes from new clean power, in the same region, and on an hourly basis
- The Midwest is the most competitive region, with enough attributes for over 2 MMT of hydrogen production (20% of current US production) by 2030
- The regions that are the most competitive will have a balanced mix of new clean power resources

Activity: Evaluating Hydrogen Pitches

#1) At your table, share hydrogen project concepts and evaluate them based on the "ladder position" and access to clean power.

• **Discussion:** what features make the project competitive? Uncompetitive? What additional support could tip the balance?

#2) What additional federal or state resources would be helpful to drive projects to completion? How can economic developers pull together all the parts to make a region most competitive for hydrogen projects?

Existing policies that can complement 45V

Industry Targeted	California Low Carbon Fuel Standard							
Funding Type	Learn More	Location CA	Industry Targeted Aviation Trucking Shipping Hydrogen Battery	Funding Type Credit Market	Amount NA Credit trading market	Deadline Ongoing		
Project Phase								
Project Phase ~ Location HVIP: California's Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project								
Location ~	Learn More	Location	Industry Targeted	Funding Type	Amount	Deadline		
	Cearn More	CA	Hydrogen Battery Trucking Shipping	Investment subsidy/grant	\$1.7 billion total allocated	HVIP is open on 3/30/2022 and is a first- come, first-serve program		

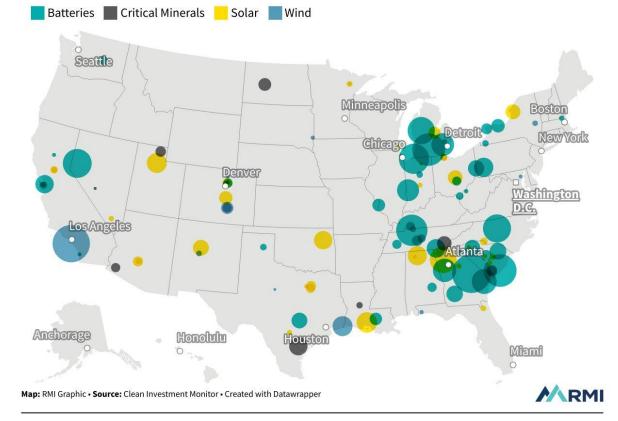
DIRT TOOL:

https://rmi.org/decarbonizing-industry-resource-tool-dirt/

- Hydrogen is a feedstock and an intermediary product – other policies can be highly complementary
- Electricity tax credits, clean fuel subsidies, and industrial retrofit programs all provide additional revenue
- The

Cleantech Manufacturing

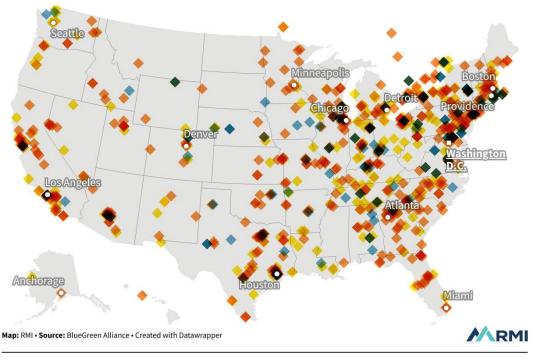
Nathan Iyer, Alisa Petersen, and Lachlan Carey


Federal Firepower: >\$120 billion for clean industry initiatives alone

					Clean hydroge hydrogen hub program fa demonstration	os, a nation or innovativ	nal strategy, ve productio	, grant on, a	Region Direct / Captu Hubs, 3	Air re
	Hydrogen Produc 13.2		Investr	nofacturing nent Tax it , 6.3B			arbon storag ation and te: 2.5B	-	Advan energy manuf and	Fut of ind pro
		EV Manufacturing Loans , 3.0B	EV Manufac Grants ,	Low- Carbon Materials Investme Highway Administr	Carbon captu demonstratio and pilot programs, 3.5	n tra infras	rbon dioxid ansportatior tructure fina nnovation, 2	n ance	Industr emissi C US ut pr D	Ear Ma R C C
Wind, Solar, and Battery Manufacturing Production Tax Credit , 30.6B	Industrial Emissions Reduction Investments , 5.8B	Low-Carbon Materials Investments (Federal Buildings Fund), 2.2B	2.0B Low-Carbon Materials Investment Services	2.0B	National Institute of Standards and Technology	DOE RD&D Funding - Office of Energy	DOE RD&D Funding - Office of Energy	DOE RD&E Funding Office Energy	Fund g - of DOE	RD&D ling RD&D ling

This is a big deal.

These credits could inject >\$200 billion into US manufacturing at >1000 facilities nation-wide.


\$65 billion of manufacturing announcements since passage of the IRA are likely to be eligible for 45X tax credits

Existing US manufacturers of clean energy components that are likely eligible for 48C or 45X tax credits

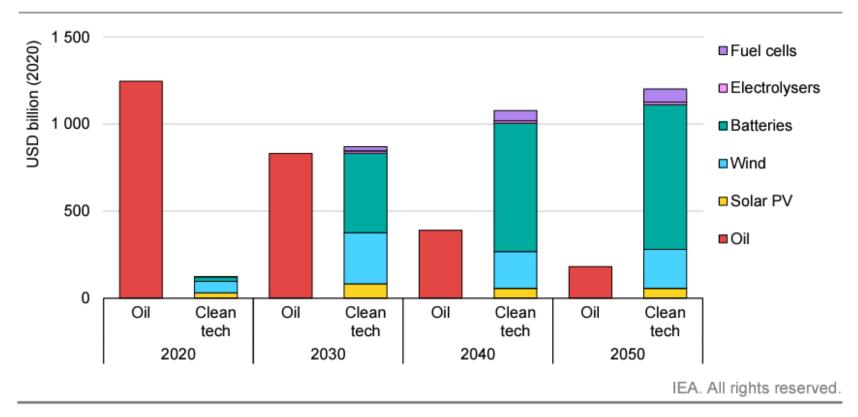
BlueGreen Alliance analysis of all known U.S. facilities that currently manufacture components for the solar, wind, energy storage/battery, electric grid, and building materials sectors.

Buildings 📕 Electric Grid 📒 Energy Storage & Batteries 📕 Offshore Wind 📕 Onshore Wind Solar Photovoltaics

RMI – Energy. Transformed.

US clean energy manufacturing is about to be globally competitive.




Figure 1. Estimated production costs for solar and wind components that are globally- and domestically-produced. Costs for domestically-produced components are reported prior to and after receiving the 45X tax credit. Production costs may differ from final product pricing. Refer to SI Table S17 for details.

Impacts of IRA incentives on levelized cost of electricity from wind and solar

In a rapidly growing global market.

In a Net Zero Scenario, Clean tech is projected to be a larger market than oil by 2030, and as large as today's oi industry by 2050.

Estimated market sizes, by value, of oil and selected clean energy


technologies in the Net Zero Emissions by 2050 Scenario

48C: A closer look at the Advanced Energy Project Credit

The 48C tax credit has existed since 2009, but the IRA significantly reinvested in it and added an energy community component, as well as expanding eligible recipients.

There are three categories under which projects can qualify for 48C

Clean Energy Manufacturing and Recycling Projects Re-equips, expands, or establishes an industrial or manufacturing facility for the production or recycling of specific clean technologies

Greenhouse Gas Emission Reduction Projects Re-equips any industrial or manufacturing facility with equipment designed to reduce greenhouse gas emissions by at least 20 percent through the installation of specific clean technologies

Critical Material Projects

Re-equips, expands or establishes an industrial facility for the processing, refining or recycling of critical materials

This credit can be worth up to 30% of the project investment amount, but that drops to just 6% if prevailing wage and labor standards are not met

Project Details	Credit Worth
Project meets wage and apprenticeship requirements	30% of total project investment
Project does <u>not</u> meet wage and apprenticeship requirements	6% of total project investment

The first round of funding is closed, with the second round said to open early 2024

Treasury expects to allocate \$4 billion of credits in the first round (of at least two rounds)

40% must go towards energy communities

Direct pay is available to tax-exempt organizations

Transferability is available for organizations that can't claim direct pay

DOE prioritized these project types for phase one

- Clean Hydrogen (e.g. manufacturing electrolyzes)
- 賽
- Electric Grid (e.g. transformers)

iهها

- Electric Heat Pumps (e.g. air source heat pumps)
- Electric Vehicles (e.g. battery components)

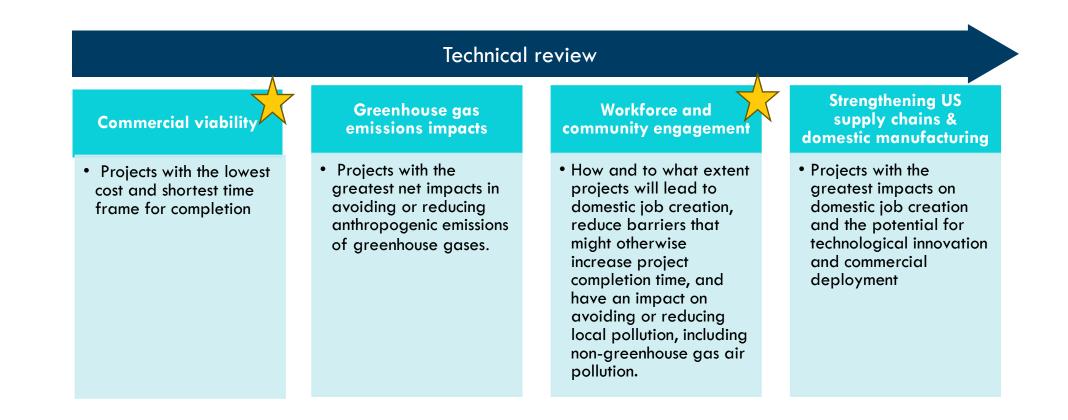
Nuclear Energy (e.g. equipment for conversion)

Solar Energy (e.g. wafer production facilities)

- Sustainable Aviation Fuel (e.g. feedstock handling equipment)
- Wind Energy (e.g. recycling on wind blades)

The phase one concept papers totaled 10X available phase one allocation, winners are announced **March 2024**

Applicants submitted concept papers seeking a total of nearly \$42 BILLION in funding across all categories of \$48C projects, including nearly \$11 BILLION for projects in designated


ENERGY COMMUNITIES.

Together, these proposed projects identify over \$142 BILLION in potential investments to strengthen American industry and clean energy supply chains.

www.energy.gov/mesc

Understanding how projects are evaluated will help to design more competitive projects

Economic developers can help manufacturers in their state be more competitive in round 2

Economic developers can support with:

Helping build business plan for commercial viability

- Potential for commercial deployment based on estimates of market share, market growth potential, and price competitiveness of the product
- Source and certainty of funding outside of 48C
- Strength of sales arrangements for the facilities products
- Degree to which the investment is profitable

Creating realistic commitments for workforce and community engagement plans

- · Commitment to wages above required Davis-Bacon prevailing wage
- Commitment to local hires, such as 50% of job
- Commitment to engaging with labor unions and worker organizations

45X: Advanced Manufacturing Production Credit

45X is available in different amounts and lengths of time for each component type.

Qualifying Components

Solar: modules, PV cells, PV wafers, solar grade polysilicon, torque tubes, structural fasteners, polymeric backsheets

Wind: nacelles, blades, towers, offshore wind foundations, related offshore wind vessels

Inverters: central inverter, commercial inverter, distributed wind inverter, microinverter, residential inverter, utility inverter

Battery: electrode materials, battery cells, battery modules

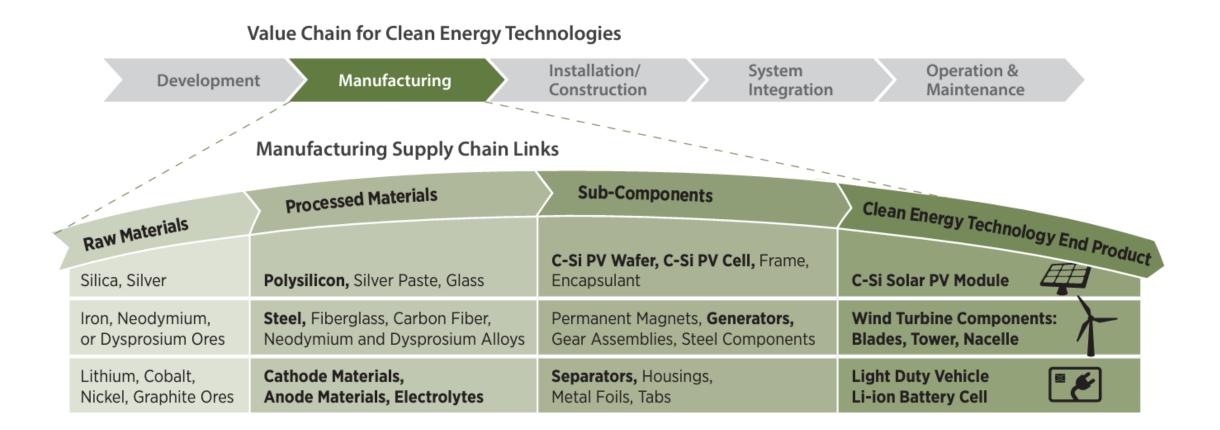
And **critical materials** include a list of 50 minerals as defined in 45X statute

45X is permanent for critical materials--for other components it's available from 2023-29, phasing down to 2032

It is not eligible for any bonuses.

This credit is only available to domestic manufacturers.

There is no limit to the size of the 45X credit



Direct pay is available to tax exempt organizations the entire time, and is available to others for five years.

Advanced Manufacturing Production Credit (45X)

Clean Technology	Manufactured Component	Tax Credit	~% of Current Price
Solar	Thin film of crystalline solar cell	\$0.04/W	23.6%
	Solar cell or wafer	\$12/m ²	
	Solar grade polysilicon	\$3/kg	10.6%
	Polymeric solar cell backsheet	\$0.40/m ²	
	Solar Module	\$0.07/W	27.2%
	Torque tube	\$0.87/kg	
	Structural fastener	\$2.28/kg	
Wind	Offshore wind vessel component	10% of sales price	
	Wind turbine blade	\$0.02/W	9.9%
	Nacelle	\$0.05/W	9.8%
	Tower	\$0.03/W	14.7%
	Offshore foundation (fixed)	\$0.02/W	4.2%
	Offshore foundation (floating)	\$0.04/W	2%
Inverters	Central inverter	\$0.0025/W	
	Utility inverter	\$0.015/W	6%
	Commercial inverter	\$0.02/W	16%
	Residential inverter	\$0.065/W	30%
	Micro-distributed inverter	\$0.11/W	38%
Batteries	Battery module	\$10/kWh	7%
	Battery module, no cells	\$45/kWh	23.4%
	Critical minerals	10% of production cost	


45X supports throughout the value chain

Geographic concentration of selected clean energy technologies by

supply chain stage and country/region, 2021

But solar and battery industries are highly concentrated today

RMI – Energy. Transformed.

China India Rest of APAC CSAM NAM Africa Eurasia Unspecified

Treasury released proposed guidance in December '23

NB: subject to a 60-day comment period

• Key Takeaways:

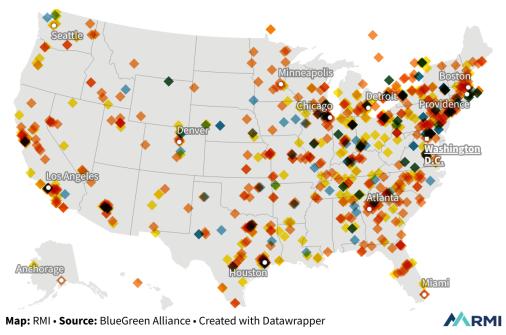
- Broad eligibility to battery types (electrochemical, thermal, flow) to enable stationary storage and industrial electrification
- Mineral refining provides a 10% processing tax credit that *excludes* the costs of the raw materials
- The guidance includes important definitions on qualifying manufacturing facilities qualify, details about each individual component, and guardrails that prevent gaming and fraud to ensure useful products are being manufactured
- Only US-based manufacturing qualifies. However, this does not extend to constituent elements, materials, or subcomponents, offering flexibility in sourcing.

45X is an opportunity for start-ups with new processes to break into these markets

US companies are more likely to be competitive with China in higher-value, high-tech manufacturing

- The \$45/kWh tax credit enables a wide range of technologies to produce competitive modules for 5 years
- Many battery companies that otherwise would be not cost-competitive now have an opportunity to scale and prove out their technology in the field; economies of scale offer the potential for long-term regional growth
- **Competitive regions** encourage manufacturing buildout, provide rapid electricity interconnection, and access to raw materials
- Procurement of these storage technologies is also an economic development opportunity – e.g. heat batteries enable the use of wind/solar power in industrial facilities for high quality heat

45X is also an opportunity for manufacturers in related fields to move into clean energy


The size of these tax credits may make it profitable to invest in new product lines

 Thousands of manufacturers across the country already have the necessary skills, workforce, and capital equipment necessary to compete in these markets and benefit from 45X credits.

Existing US manufacturers of clean energy components that are likely eligible for 48C or 45X tax credits

BlueGreen Alliance analysis of all known U.S. facilities that currently manufacture components for the solar, wind, energy storage/battery, electric grid, and building materials sectors.

Buildings Electric Grid Energy Storage & Batteries Offshore Wind
 Onshore Wind Solar Photovoltaics


So what can economic developers do?

Depends on the market and existing capacities.

	Solar	Wind	Batteries	Critical Minerals
Key competitiveness factors	Production costs (cheap to transport); economies-of-scale; supply chain integration	Proximity to demand centers (expensive to transport)	Integration w/ EV supply chain (L-ion) OR Existing high-heat industrial capacity (Thermal Batteries)	Skills & expertise. (Chemical and metallurgical)
Related industries	Aluminum, polysilicon,	Steel production	Auto manufacturing, electric equipment manufacturing	Mining, upstream metals processing
Risk Factors	High geographic concentration (China), small margins	Project delays (especially offshore)	Supply availability of raw materials (especially Lithium); availability of electricity	Supply availability of raw materials.
Development opportunity	Conventional investment attraction in PV; University- affiliated cluster development in next-gen tech	Existing facilities expansions; Value chain development in offshore markets	EV Value chain development in 'battery belt'; University-affiliated entrepreneurship	Workforce development and cluster creation in heavy industrial areas

Solar PV Manufacturing

Key facts and trends

• Existing domestic polysilicon production facilities are mostly idle or supply to other industries. Requires domestic ingot production to restart.

• The Uyghur Forced Labor Prevention Act has complicated the polysilicon market significantly, which prohibits all products originating in Xinjiang

- The U.S. is the largest producer of thin-film modules, which do not rely on materials from China.
- The thin-film supply chain is concentrated in Ohio

• Solar manufacturing in the U.S. is clustered in Alabama, Florida, Georgia, and Ohio

- The U.S. is the world's second-largest PV market.
- Solar accounted for 48% of all new electricity-generating capacity in 2023 and grew at 35% yoy

• Average global solar module prices fell 30-40% in 2023, driven by excess capacity in China.

• Price instability was lower in the U.S - at 10-15% - thanks to various trade protections.

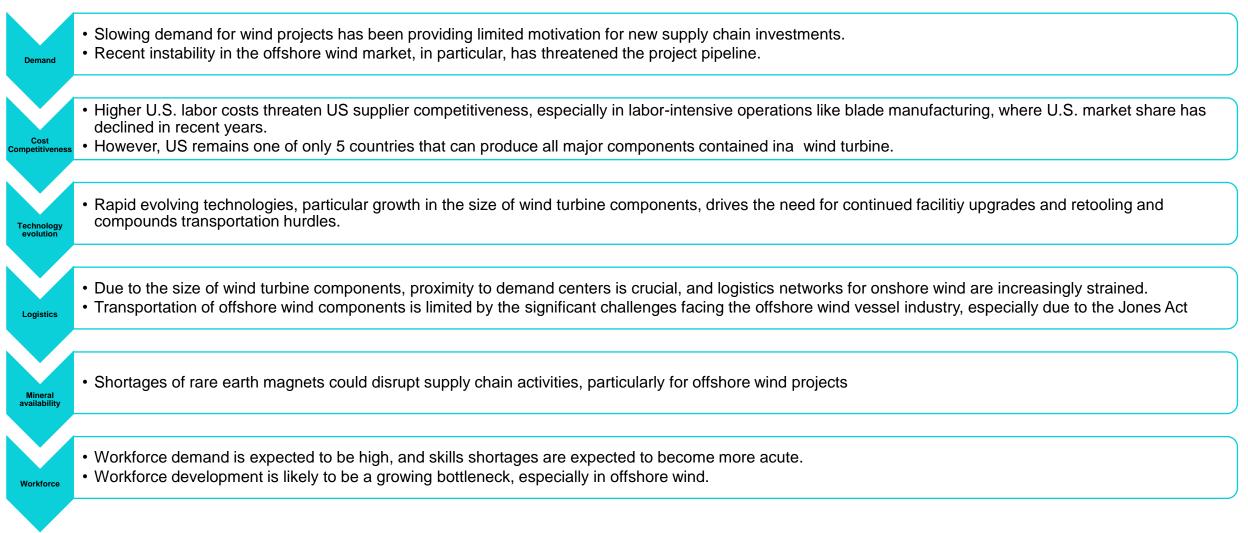
• Most U.S. solar panels are imported.

• China will control over 80 percent of the world's production of polysilicon, wafers, cells, and modules

• Without financial support, U.S. solar manufacturing faces ~30-40% higher costs than Chinese producers

RMI – Energy. Transformed.

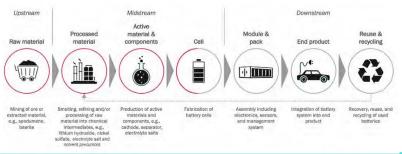
Market


Price instability

Globa

Cost compariso

Wind Manufacturing


Key facts and trends

RMI - Energy. Transformed.

Battery Manufacturing

Key facts and trends

RMI - Energy. Transformed.

Critical minerals refining & processing

Key Facts and Trends

- Caught between raw materials and downstream manufacturers, the industry typically faces margin pressures due to limited market power
- Downstream producers have prioritized short-term profits over diversified supply chains
- High market share incumbents have sufficient market power to shape prices and distort market signals with substantial overcapacities & non-transparent stockpiles
- Incumbents have a significant advantages through their access to a skilled workforce, established supply chains, and accumulated technological expertise.

RMI – Energy. Transformed.

Pricing Powe

Questions?

Break

Time Remaining

RMI – Energy. Transformed.

Case-Study Breakout Discussions

Group 1: IRA for Business Attraction

Group 2: IRA for Business Retention/Expansion

Group 3: IRA for Greater Stakeholder Engagement

Group 4: IRA for Greater Policy Alignment

Priority Actions – Questions

1. What is one key learning about IRA from this workshop that will be beneficial for your work?

2. What is one priority action that you commit to moving forward in your community to help leverage IRA?

What Next?

- State, regional, local engagement on IRA?
- Focused facilitation for projects?
- Layering & stacking of incentives?
- A second IRA bootcamp for EDOs?
- Focused training? Advisory?

Thank you !